Find your tribe in a Sea of Creativity
Our Space Launch System (SLS) will be the world’s most powerful rocket, engineered to carry astronauts and cargo farther and faster than any rocket ever built. Here are five reasons it is the backbone of bold, deep space exploration missions.
The SLS rocket is a national asset for leading new missions to deep space. More than 1,000 large and small companies in 44 states are building the rocket that will take humans to the Moon. Work on SLS has an economic impact of $5.7 billion and generates 32,000 jobs. Small businesses across the U.S. supply 40 percent of the raw materials for the rocket. An investment in SLS is an investment in human spaceflight and in American industry and will lead to applications beyond NASA.
Modern deep space systems are designed and built to keep humans safe from launch to landing. SLS provides the power to safely send the Orion spacecraft and astronauts to the Moon. Orion, powered by the European Service Module, keeps the crew safe during the mission. Exploration Ground Systems at NASA’s Kennedy Space Center in Florida, safely launches the SLS with Orion on top and recovers the astronauts and Orion after splashdown.
SLS is engineered for decades of human space exploration to come. SLS is not just one rocket but a transportation system that evolves to meet the needs of a variety of missions. The rocket can send more than 26 metric tons (57,000 pounds) to the Moon and can evolve to send up to 45 metric tons (99,000 pounds) to the Moon. NASA has the expertise to meet the challenges of designing and building a new, complex rocket that evolves over time while developing our nation’s capability to extend human existence into deep space.
SLS’s versatile design enables it to carry astronauts their supplies as well as cargo for resupply and send science missions far in the solar system. With its power and unprecedented ability to transport heavy and large volume science payloads in a single mission, SLS can send cargos to Mars or probes even farther out in the solar system, such as to Jupiter’s moon Europa, faster than any other rocket flying today. The rocket’s large cargo volume makes it possible to design planetary probes, telescopes and other scientific instruments with fewer complex mechanical parts.
The Space Launch System is the right rocket to enable exploration on and around the Moon and even longer missions away from home. SLS makes it possible for astronauts to bring along supplies and equipment needed to explore, such as pieces of the Gateway, which will be the cornerstone of sustainable lunar exploration. SLS’s ability to launch both people and payloads to deep space in a single mission makes space travel safer and more efficient. With no buildings, hardware or grocery stores on the Moon or Mars, there are plenty of opportunities for support by other rockets. SLS and contributions by international and commercial partners will make it possible to return to the Moon and create a springboard for exploration of other areas in the solar system where we can discover and expand knowledge for the benefit of humanity.
Learn more about the Space Launch System.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The mission, called Parker Solar Probe, is outfitted with a lineup of instruments to measure the Sun's particles, magnetic and electric fields, solar wind and more – all to help us better understand our star, and, by extension, stars everywhere in the universe.
Parker Solar Probe is about the size of a small car, and after launch – scheduled for no earlier than Aug. 6, 2018 – it will swing by Venus on its way to the Sun, using a maneuver called a gravity assist to draw its orbit closer to our star. Just three months after launch, Parker Solar Probe will make its first close approach to the Sun – the first of 24 throughout its seven-year mission.
Though Parker Solar Probe will get closer and closer to the Sun with each orbit, the first approach will already place the spacecraft as the closest-ever human-made object to the Sun, swinging by at 15 million miles from its surface. This distance places it well within the corona, a region of the Sun's outer atmosphere that scientists think holds clues to some of the Sun's fundamental physics.
For comparison, Mercury orbits at about 36 million miles from the Sun, and the previous record holder – Helios 2, in 1976 – came within 27 million miles of the solar surface.
Humanity has studied the Sun for thousands of years, and our modern understanding of the Sun was revolutionized some 60 years ago with the start of the Space Age. We've come to understand that the Sun affects Earth in more ways than just providing heat and light – it's an active and dynamic star that releases solar storms that influence Earth and other worlds throughout the solar system. The Sun's activity can trigger the aurora, cause satellite and communications disruptions, and even – in extreme cases – lead to power outages.
Much of the Sun's influence on us is embedded in the solar wind, the Sun's constant outflow of magnetized material that can interact with Earth's magnetic field. One of the earliest papers theorizing the solar wind was written by Dr. Gene Parker, after whom the mission is named.
Though we understand the Sun better than we ever have before, there are still big questions left to be answered, and that's where scientists hope Parker Solar Probe will help.
First, there's the coronal heating problem. This refers to the counterintuitive truth that the Sun's atmosphere – the corona – is much, much hotter than its surface, even though the surface is millions of miles closer to the Sun's energy source at its core. Scientists hope Parker Solar Probe's in situ and remote measurements will help uncover the mechanism that carries so much energy up into the upper atmosphere.
Second, scientists hope to better understand the solar wind. At some point on its journey from the Sun out into space, the solar wind is accelerated to supersonic speeds and heated to extraordinary temperatures. Right now, we measure solar wind primarily with a group of satellites clustered around Lagrange point 1, a spot in space between the Sun and Earth some 1 million miles from us.
By the time the solar wind reaches these satellites, it has traveled about 92 million miles already, blending together the signatures that could shed light on the acceleration process. Parker Solar Probe, on the other hand, will make similar measurements less than 4 million miles from the solar surface – much closer to the solar wind's origin point and the regions of interest.
Scientists also hope that Parker Solar Probe will uncover the mechanisms at work behind the acceleration of solar energetic particles, which can reach speeds more than half as fast as the speed of light as they rocket away from the Sun! Such particles can interfere with satellite electronics, especially for satellites outside of Earth's magnetic field.
Parker Solar Probe will launch from Space Launch Complex 37 at Cape Canaveral Air Force Station, adjacent to NASA’s Kennedy Space Center in Florida. Because of the enormous speed required to achieve its solar orbit, the spacecraft will launch on a United Launch Alliance Delta IV Heavy, one of the most powerful rockets in the world.
Stay tuned over the next few weeks to learn more about Parker Solar Probe's science and follow along with its journey to launch. We'll be posting updates here on Tumblr, on Twitter and Facebook, and at nasa.gov/solarprobe.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
In July 2015, we saw Pluto up close for the first time and—after three years of intense study—the surprises keep coming. “It’s clear,” says Jeffery Moore, New Horizons’ geology team lead, “Pluto is one of the most amazing and complex objects in our solar system.”
These are combined observations of Pluto over the course of several decades. The first frame is a digital zoom-in on Pluto as it appeared upon its discovery by Clyde Tombaugh in 1930. More frames show of Pluto as seen by the Hubble Space Telescope. The final sequence zooms in to a close-up frame of Pluto taken by our New Horizons spacecraft on July 14, 2015.
Pluto’s surface sports a remarkable range of subtle colors are enhanced in this view to a rainbow of pale blues, yellows, oranges, and deep reds. Many landforms have their own distinct colors, telling a complex geological and climatological story that scientists have only just begun to decode. The image resolves details and colors on scales as small as 0.8 miles (1.3 kilometers). Zoom in on the full resolution image on a larger screen to fully appreciate the complexity of Pluto’s surface features.
July 14, 2015: New Horizons team members Cristina Dalle Ore, Alissa Earle and Rick Binzel react to seeing the spacecraft's last and sharpest image of Pluto before closest approach.
Just 15 minutes after its closest approach to Pluto, the New Horizons spacecraft captured this near-sunset view of the rugged, icy mountains and flat ice plains extending to Pluto's horizon. The backlighting highlights more than a dozen layers of haze in Pluto's tenuous atmosphere. The image was taken from a distance of 11,000 miles (18,000 kilometers) to Pluto; the scene is 780 miles (1,250 kilometers) wide.
Found near the mountains that encircle Pluto’s Sputnik Planitia plain, newly discovered ridges appear to have formed out of particles of methane ice as small as grains of sand, arranged into dunes by wind from the nearby mountains.
The vast nitrogen ice plains of Pluto’s Sputnik Planitia – the western half of Pluto’s “heart”—continue to give up secrets. Scientists processed images of Sputnik Planitia to bring out intricate, never-before-seen patterns in the surface textures of these glacial plains.
High resolution images of Pluto’s largest moon, Charon, show a surprisingly complex and violent history. Scientists expected Charon to be a monotonous, crater-battered world; instead, they found a landscape covered with mountains, canyons, landslides, surface-color variations and more.
One of two potential cryovolcanoes spotted on the surface of Pluto by the New Horizons spacecraft. This feature, known as Wright Mons, was informally named by the New Horizons team in honor of the Wright brothers. At about 90 miles (150 kilometers) across and 2.5 miles (4 kilometers) high, this feature is enormous. If it is in fact an ice volcano, as suspected, it would be the largest such feature discovered in the outer solar system.
Pluto's receding crescent as seen by New Horizons at a distance of 120,000 miles (200,000 kilometers). Scientists believe the spectacular blue haze is a photochemical smog resulting from the action of sunlight on methane and other molecules in Pluto's atmosphere. These hydrocarbons accumulate into small haze particles, which scatter blue sunlight—the same process that can make haze appear bluish on Earth.
On Jan. 1, 2019, New Horizons will fly past a small Kuiper Belt Object named MU69 (nicknamed Ultima Thule)—a billion miles (1.5 billion kilometers) beyond Pluto and more than four billion miles (6.5 billion kilometers) from Earth. It will be the most distant encounter of an object in history—so far—and the second time New Horizons has revealed never-before-seen landscapes.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
We just hired six new flight directors to join a unique group of individuals who lead human spaceflights from mission control at our Johnson Space Center in Houston.
A flight director manages all human spaceflight missions and related test flights, including International Space Station missions, integration of new American-made commercial spacecraft and developing plans for future Orion missions to the Moon and beyond.
Only 97 people have served as flight directors, or are in training to do so, in the 50-plus years of human spaceflight. That’s fewer than the over 300 astronauts! We talked with the new class about their upcoming transitions, how to keep calm in stressful situations, the importance of human spaceflight and how to best learn from past mistakes. Here’s what they had to say…
Allison is from Lancaster, Ohio and received a BS in Aerospace Engineering from Purdue University. She wanted to work at NASA for as long as she can remember. “I was four-and-a-half when Challenger happened,” she said. “It was my first childhood memory.” Something in her clicked that day. “After, when people asked what I wanted to be when I grew up, I said an astronaut.”
By high school a slight fear of heights, a propensity for motion sickness and an aptitude for engineering shifted her goal a bit. She didn’t want to be an astronaut. “I wanted to train astronauts,” she said. Allison has most recently worked at our Neutral Buoyancy Lab managing the daily operations of the 40-ft-deep pool the astronauts use for spacewalk training! She admits she’ll miss “the smell of chlorine each day. Coming to work at one of the world’s largest pools and training astronauts is an incredible job,” she says. But she’s excited to be back in mission control, where in a previous role she guided astronauts through spacewalks.
She’s had to make some tough calls over the years. So we asked her if she had any tips for when something… isn’t going as planned. She said, “It’s so easy to think the sky is falling. Take a second to take a deep breath, and then you’ll realize it’s not as bad as you thought.”
Adi is from Chicago, Illinois and graduated from the University of Illinois Urbana Champaign with a BS in Aerospace Engineering. He joined us in 2008 as a member of the very first group of flight controllers that specialize in data handling and communications and tracking systems aboard the space station.
Most recently he served as the group lead in the Avionics Trainee group, which he loved. “I was managing newer folks just coming to NASA from college and getting to become flight controllers,” he said. “I will miss getting to mentor them from day one.” But he’s excited to start his new role alongside some familiar faces already in mission control. “It’s a great group of people,” he said of his fellow 2018 flight director class. “The six of us, we mesh well together, and we are all from very diverse backgrounds.”
As someone who has spent most of his career supporting human spaceflight and cargo missions from mission control, we asked him why human spaceflight is so important. He had a practical take. “It allows us to solve problems we didn’t know we had,” he said. “For example, when we went to the moon, we had to solve all kinds of problems on how to keep humans alive for long-duration flights in space which directly impacts how we live on the ground. All of the new technology we develop for living in space, we also use on the ground.”
Marcos is from Caguas, Puerto Rico and earned a BS in Mechanical Engineering from the University of Puerto Rico and an MS in Aerospace Engineering from Purdue University. Spanish is his first language; English is his second.
The first time he came to the Continental US was on a trip to the Kennedy Space Center in Florida as a kid! “I always knew I wanted to work for NASA,” he said. “And I knew I wanted to be an engineer because I liked to break things to try to figure out how they worked.” He joined us in 2010 as an intern in a robotics laboratory working on conceptual designs for an experimental, autonomous land rover. He later transitioned to the space station flight control team, where he has led various projects, including major software transitions, spacewalks and commercial cargo missions!
He shares his new coworkers’ thoughts on the practical aspects of human spaceflight and believes it’s an expression of our “drive to explore” and our “innate need to know the world and the universe better.” But for him, “It’s more about answering the fundamental questions of where we come from and where we’re headed.”
Pooja graduated from The University of Texas at Austin with a BS in Aerospace Engineering. She began at NASA in 2007 as a flight controller responsible for the motion control system of the International Space Station. She currently works as a Capsule Communicator, talking with the astronauts on the space station, and on integration with the Boeing Starliner commercial crew spacecraft.
She has a two-year-old daughter, and she’s passionate about motherhood, art, fashion, baking, international travel and, of course, her timing as a new flight director! “Not only have we been doing International Space Station operations continuously, and we will continue to do that, but we are about to launch U.S. crewed vehicles off of U.S. soil for the first time since the space shuttle in 2011. Exploration is ramping up and taking us back to the moon!” she said.” “By the time we get certified, a lot of the things we will get to do will be next-gen.”
We asked her if she had any advice for aspiring flight directors who might want to support such missions down the road. “Work hard every day,” she said. “Every day is an interview. And get a mentor. Or multiple mentors. Having mentorship while you progress through your career is very important, and they really help guide you in the right direction.”
Paul was born in Manhasset, NY, and has a BS in Mechanical Engineering from Louisiana Tech University, a Master’s of Military Operational Arts and Science from Air University, and an MS in Astronautical Engineering from the University of Southern California. He began his career as an officer in the United States Air Force in 1996 and authored the Air Force’s certification guide detailing the process through which new industry launch vehicles (including SpaceX’s Falcon 9) gain approval to launch Department of Defense (DoD) payloads.
As a self-described “Star Wars kid,” he has always loved space and, of course, NASA! After retiring as a Lieutenant Colonel in 2016, Paul joined Johnson Space Center as the Deputy Director of the DoD Space Test Program Human Spaceflight Payloads Office. He’s had a rich career in some pretty high-stakes roles. We asked him for advice on handling stress and recovering from life’s occasional setbacks. “For me, it’s about taking a deep breath, focusing on the data and trying not to what if too much,” he said. “Realize that mistakes are going to happen. Be mentally prepared to know that at some point it’s going to happen—you’re going to have to do that self-reflection to understand what you could’ve done better and how you’ll fix it in the future. That constant process of evaluation and self-reflection will help you get through it.”
Rebecca is from Princeton, Kentucky and has a BS in Mechanical Engineering from the University of Kentucky and an MS in Systems Engineering from the University of Houston, Clear Lake. She joined us in 2007 as a flight controller responsible for maintenance, repairs and hardware installations aboard the space station.
Since then, she’s worked as a capsule communicator for the space station and commercial crew programs and on training astronauts. She’s dedicated her career to human spaceflight and has a special appreciation for the program’s long-term benefits. “As our human race advances and we change our planet in lots of different ways, we may eventually need to get off of it,” she said. “There’s no way to do that until we explore a way to do it safely and effectively for mass numbers of people. And to do that, you have to start with one person.” We asked her if there are any misconceptions about flight directors. She responded, “While they are often steely-eyed missile men and women, and they can be rough around the edges, they are also very good mentors and teachers. They’re very much engaged in bringing up the next generation of flight controllers for NASA.”
Congrats to these folks on leading the future of human spaceflight!
You can learn more about each of them HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Juno mission arrived at the King of Planets in July 2016. The intrepid robotic explorer has been revealing Jupiter's secrets ever since.
After an odyssey of almost five years and 1.7 billion miles (2.7 billion kilometers), our Juno spacecraft fired its main engine to enter orbit around Jupiter on July 4, 2016. Juno, with its suite of nine science instruments, was the first spacecraft to orbit the giant planet since the Galileo mission in the 1990s. It would be the first mission to make repeated excursions close to the cloud tops, deep inside the planet’s powerful radiation belts.
Juno carries a color camera called JunoCam. In a remarkable first for a deep space mission, the Juno team reached out to the general public not only to help plan which pictures JunoCam would take, but also to process and enhance the resulting visual data. The results include some of the most beautiful images in the history of space exploration.
It didn’t take long for Juno—and the science teams who hungrily consumed the data it sent home—to turn theories about how Jupiter works inside out. Among the early findings: Jupiter's poles are covered in Earth-sized swirling storms that are densely clustered and rubbing together. Jupiter's iconic belts and zones were surprising, with the belt near the equator penetrating far beneath the clouds, and the belts and zones at other latitudes seeming to evolve to other structures below the surface.
The Goldstone Apple Valley Radio Telescope (GAVRT) project, a collaboration among NASA, JPL and the Lewis Center for Educational Research, lets students do real science with a large radio telescope. GAVRT data includes Jupiter observations relevant to Juno, and Juno scientists collaborate with the students and their teachers.
Measuring in at 10,159 miles (16,350 kilometers) in width (as of April 3, 2017) Jupiter's Great Red Spot is 1.3 times as wide as Earth. The storm has been monitored since 1830 and has possibly existed for more than 350 years. In modern times, the Great Red Spot has appeared to be shrinking. In July 2017, Juno passed directly over the spot, and JunoCam images revealed a tangle of dark, veinous clouds weaving their way through a massive crimson oval.
“For hundreds of years scientists have been observing, wondering and theorizing about Jupiter’s Great Red Spot,” said Scott Bolton, Juno principal investigator from the Southwest Research Institute in San Antonio. “Now we have the best pictures ever of this iconic storm. It will take us some time to analyze all the data from not only JunoCam, but Juno’s eight science instruments, to shed some new light on the past, present and future of the Great Red Spot.”
Data collected by the Juno spacecraft during its first pass over Jupiter's Great Red Spot in July 2017 indicate that this iconic feature penetrates well below the clouds. The solar system's most famous storm appears to have roots that penetrate about 200 miles (300 kilometers) into the planet's atmosphere.
Scientists on the Juno mission observed massive amounts of energy swirling over Jupiter’s polar regions that contribute to the giant planet’s powerful auroras – only not in ways the researchers expected. Examining data collected by the ultraviolet spectrograph and energetic-particle detector instruments aboard Juno, scientists observed signatures of powerful electric potentials, aligned with Jupiter’s magnetic field, that accelerate electrons toward the Jovian atmosphere at energies up to 400,000 electron volts. This is 10 to 30 times higher than the largest such auroral potentials observed at Earth.
Jupiter has the most powerful auroras in the solar system, so the team was not surprised that electric potentials play a role in their generation. What puzzled the researchers is that despite the magnitudes of these potentials at Jupiter, they are observed only sometimes and are not the source of the most intense auroras, as they are at Earth.
Juno scientists shared a 3D infrared movie depicting densely packed cyclones and anticyclones that permeate the planet’s polar regions, and the first detailed view of a dynamo, or engine, powering the magnetic field for any planet beyond Earth (video above). Juno mission scientists took data collected by the spacecraft’s Jovian InfraRed Auroral Mapper (JIRAM) instrument and generated a 3D fly-around of the Jovian world’s north pole.
Imaging in the infrared part of the spectrum, JIRAM captures light emerging from deep inside Jupiter equally well, night or day. The instrument probes the weather layer down to 30 to 45 miles (50 to 70 kilometers) below Jupiter's cloud tops.
Powerful bolts of lightning light up Jupiter’s clouds. In some ways its lightning is just like what we’re used to on Earth. In other ways,it’s very different. For example, most of Earth’s lightning strikes near the equator; on Jupiter, it’s mostly around the poles.
In June, we approved an update to Juno’s science operations until July 2021. This provides for an additional 41 months in orbit around. Juno is in 53-day orbits rather than 14-day orbits as initially planned because of a concern about valves on the spacecraft’s fuel system. This longer orbit means that it will take more time to collect the needed science data, but an independent panel of experts confirmed that Juno is on track to achieve its science objectives and is already returning spectacular results. The spacecraft and all its instruments are healthy and operating nominally.
Read the full web version of this week’s ‘Solar System: 10 Things to Know’ article HERE.
For regular updates, follow NASA Solar System on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
A sextant is a tool for measuring the angular altitude of a star above the horizon and has helped guide sailors across oceans for centuries. It is now being tested aboard the International Space Station as a potential emergency navigation tool for guiding future spacecraft across the cosmos. The Sextant Navigation investigation will test the use of a hand-held sextant that utilizes star sighting in microgravity.
Read more about how we’re testing this tool in space!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
June 22 marks the 40th anniversary of Charon’s discovery—the dwarf planet Pluto’s largest and first known moon. While the definition of a planet is the subject of vigorous scientific debate, this dwarf planet is a fascinating world to explore. Get to know Pluto’s beautiful, fascinating companion this week.
Astronomers James Christy and Robert Harrington weren’t even looking for satellites of Pluto when they discovered Charon in June 1978 at the U.S. Naval Observatory Flagstaff Station in Arizona – only about six miles from where Pluto was discovered at Lowell Observatory. Instead, they were trying to refine Pluto's orbit around the Sun when sharp-eyed Christy noticed images of Pluto were strangely elongated; a blob seemed to move around Pluto.
The direction of elongation cycled back and forth over 6.39 days―the same as Pluto's rotation period. Searching through their archives of Pluto images taken years before, Christy then found more cases where Pluto appeared elongated. Additional images confirmed he had discovered the first known moon of Pluto.
Christy proposed the name Charon after the mythological ferryman who carried souls across the river Acheron, one of the five mythical rivers that surrounded Pluto's underworld. But Christy also chose it for a more personal reason: The first four letters matched the name of his wife, Charlene. (Cue the collective sigh.)
Charon—the largest of Pluto’s five moons and approximately the size of Texas—is almost half the size of Pluto itself. The little moon is so big that Pluto and Charon are sometimes referred to as a double dwarf planet system. The distance between them is 12,200 miles (19,640 kilometers).
Many scientists on the New Horizons mission expected Charon to be a monotonous, crater-battered world; instead, they found a landscape covered with mountains, canyons, landslides, surface-color variations and more. High-resolution images of the Pluto-facing hemisphere of Charon, taken by New Horizons as the spacecraft sped through the Pluto system on July 14 and transmitted to Earth on Sept. 21, reveal details of a belt of fractures and canyons just north of the moon’s equator.
This great canyon system stretches more than 1,000 miles (1,600 kilometers) across the entire face of Charon and likely around onto Charon’s far side. Four times as long as the Grand Canyon, and twice as deep in places, these faults and canyons indicate a titanic geological upheaval in Charon’s past.
In April 2018, the International Astronomical Union—the internationally recognized authority for naming celestial bodies and their surface features—approved a dozen names for Charon’s features proposed by our New Horizons mission team. Many of the names focus on the literature and mythology of exploration.
This flyover video of Charon was created thanks to images from our New Horizons spacecraft. The “flight” starts with the informally named Mordor (dark) region near Charon’s north pole. Then the camera moves south to a vast chasm, descending to just 40 miles (60 kilometers) above the surface to fly through the canyon system.
This composite of enhanced color images of Pluto (lower right) and Charon (upper left), was taken by New Horizons as it passed through the Pluto system on July 14, 2015. This image highlights the striking differences between Pluto and Charon. The color and brightness of both Pluto and Charon have been processed identically to allow direct comparison of their surface properties, and to highlight the similarity between Charon’s polar red terrain and Pluto’s equatorial red terrain.
Charon neither rises nor sets, but hovers over the same spot on Pluto's surface, and the same side of Charon always faces Pluto―a phenomenon called mutual tidal locking.
Bathed in “Plutoshine,” this image from New Horizons shows the night side of Charon against a star field lit by faint, reflected light from Pluto itself on July 15, 2015.
Read the full version of this week’s ‘10 Things to Know’ article on the web HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
We haven’t found aliens but we are a little further along in our search for life on Mars thanks to two recent discoveries from our Curiosity Rover.
We detected organic molecules at the harsh surface of Mars! And what’s important about this is we now have a lot more certainty that there’s organic molecules preserved at the surface of Mars. We didn’t know that before.
One of the discoveries is we found organic molecules just beneath the surface of Mars in 3 billion-year-old sedimentary rocks.
Second, we’ve found seasonal variations in methane levels in the atmosphere over 3 Mars years (nearly 6 Earth years). These two discoveries increase the chances that the record of habitability and potential life has been preserved on the Red Planet despite extremely harsh conditions on the surface.
Both discoveries were made by our chem lab that rides aboard the Curiosity rover on Mars.
Here’s an image from when we installed the SAM lab on the rover. SAM stands for “Sample Analysis at Mars” and SAM did two things on Mars for this discovery.
One - it tested Martian rocks. After the arm selects a sample of pulverized rock, it heats up that sample and sends that gas into the chamber, where the electron stream breaks up the chemicals so they can be analyzed.
What SAM found are fragments of large organic molecules preserved in ancient rocks which we think come from the bottom of an ancient Martian lake. These organic molecules are made up of carbon and hydrogen, and can include other elements like nitrogen and oxygen. That’s a possible indicator of ancient life…although non-biological processes can make organic molecules, too.
The other action SAM did was ‘sniff’ the air.
When it did that, it detected methane in the air. And for the first time, we saw a repeatable pattern of methane in the Martian atmosphere. The methane peaked in the warm, summer months, and then dropped in the cooler, winter months.
On Earth, 90 percent of methane is produced by biology, so we have to consider the possibility that Martian methane could be produced by life under the surface. But it also could be produced by non-biological sources. Right now, we don’t know, so we need to keep studying the Mars!
One of our upcoming Martian missions is the InSight lander. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is a Mars lander designed to give the Red Planet its first thorough checkup since it formed 4.5 billion years ago. It is the first outer space robotic explorer to study in-depth the "inner space" of Mars: its crust, mantle, and core.
Finding methane in the atmosphere and ancient carbon preserved on the surface gives scientists confidence that our Mars 2020 rover and ESA’s (European Space Agency's) ExoMars rover will find even more organics, both on the surface and in the shallow subsurface.
Read the full release on today’s announcement HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
What do astronauts, microbes and plants all have in common? Each relies on DNA – essentially a computer code for living things – to grow and thrive. The microscopic size of DNA, however, can create some big challenges for studying it aboard the International Space Station.
Studying DNA in space could lead to a better understanding of microgravity’s impact on living organisms and could also offer ways to identify unknown microbes in spacecraft, humans and the deep space locations we hope to visit one day.
Most Earth-based molecular research equipment is large and requires significant amounts of power to run. Those are two characteristics that can be difficult to support aboard the station, so previous research samples requiring DNA amplification and sequencing had to be stored in space until they could be sent back to Earth aboard a cargo spacecraft, adding to the time required to get results.
However, all of that has changed in a few short years as we’ve worked to find new solutions for rapid in-flight molecular testing aboard the space station.
“We need[ed] to get machines to be compact, portable, robust, and independent of much power generation to allow for more agile testing in space,” NASA astronaut and molecular biologist Kate Rubins said in a 2016 downlink with the National Institutes of Health.
The result? An advanced suite of tabletop and palm-sized tools including MinION, miniPCR, and Wet-Lab-2, and more tools and processes on the horizon.
Space-based DNA testing took off in 2016 with the Biomolecule Sequencer.
Comprised of the MinION sequencer and a Surface Pro 3 tablet for analysis, the tool was used to sequence DNA in space for the first time with Rubins at the helm.
In 2017, that tool was used again for Genes in Space-3, as NASA astronaut Peggy Whitson collected and tested samples of microbial growth from around the station.
Alongside MinION, astronauts also tested miniPCR, a thermal cycler used to perform the polymerase chain reaction. Together these platforms provided the identification of unknown station microbes for the first time EVER from space.
This year, those testing capabilities translated into an even stronger portfolio of DNA-focused research for the orbiting laboratory’s fast-paced science schedule. For example, miniPCR is being used to test weakened immune systems and DNA alterations as part of a student-designed investigation known as Genes in Space-5.
The study hopes to reveal more about astronaut health and potential stress-related changes to DNA created by spaceflight. Additionally, WetLab-2 facility is a suite of tools aboard the station designed to process biological samples for real-time gene expression analysis.
More tools for filling out the complete molecular studies opportunities on the orbiting laboratory are heading to space soon.
“The mini revolution has begun,” said Sarah Wallace, our principal investigator for the upcoming Biomolecule Extraction and Sequencing Technology (BEST) investigation. “These are very small, efficient tools. We have a nicely equipped molecular lab on station and devices ideally sized for spaceflight.”
BEST is scheduled to launch to the station later this spring and will compare swab-to-sequencer testing of unknown microbes aboard the space station against current culture-based methods.
Fast, reliable sequencing and identification processes could keep explorers safer on missions into deep space. On Earth, these technologies may make genetic research more accessible, affordable and mobile.
To learn more about the science happening aboard the space station, follow @ISS_Research for daily updates. For opportunities to see the space station pass over your town, check out Spot the Station.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The race to land astronauts on the Moon was getting tense 50 years ago this week. Apollo 6, the final uncrewed test flight of America’s powerful Moon rocket, launched on April 4, 1968. Several technical issues made for a less-than-perfect launch, but the test flight nonetheless convinced NASA managers that the rocket was up to the task of carrying humans. Less than two years remained to achieve President John F. Kennedy’s goal to put humans on the Moon before the decade was out, meaning the Saturn V rocket had to perform.
After the April 1968 Apollo 6 test flight (pictured above), the words of Deke Slayton (one of the original Mercury 7 astronauts) and intense competition with a rival team in the Soviet Union propelled a 12-member panel to unanimously vote for a Christmas 1968 crewed mission to orbit the Moon.
The Saturn V rocket stood about the height of a 36-story-tall building, and 60 feet (18 meters) taller than the Statue of Liberty. Fully fueled for liftoff, the Saturn V weighed 6.2 million pounds (2.8 million kilograms), or the weight of about 400 elephants.
Stand back, Ms. Frizzle. The Saturn V generated 7.6 million pounds (34.5 million newtons) of thrust at launch, creating more power than 85 Hoover Dams. It could launch about 130 tons (118,000 kilograms) into Earth orbit. That's about as much weight as 10 school buses. The Saturn V could launch about 50 tons (43,500 kilograms) to the Moon. That's about the same as four school buses.
On Christmas Eve 1968, the Saturn V delivered on engineers’ promises by hurling Frank Borman, Jim Lovell and Bill Anders into lunar orbit. The trio became the first human beings to orbit another world. The Apollo 8 crew broadcast a special holiday greeting from lunar orbit and also snapped the iconic earthrise image of our home planet rising over the lunar landscape.
The crew of Apollo 9 proved that they could pull the lunar module out of the top of the Saturn V’s third stage and maneuver it in space (in this case high above Earth). The crew named their command module “Gumdrop.” The Lunar Module was named “Spider.”
Saturn-V AS-505 provided the ride for the second dry run to the Moon in 1969. Tom Stafford, Gene Cernan and John Young rode Command Module “Charlie Brown” to lunar orbit and then took Lunar Module “Snoopy” on a test run in lunar orbit. Apollo 10 did everything but land on the Moon, setting the stage for the main event a few months later. Young and Cernan returned to walk on the Moon aboard Apollo 16 and 17 respectively. Cernan, who died in 2017, was the last human being (so far) to set foot on the Moon.
The launch of Apollo 11—the first mission to land humans on the Moon—provided another iconic visual as Saturn-V AS-506 roared to life on Launch Pad 39A at Kennedy Space Center in Florida. Three days later, Neil Armstrong and Buzz Aldrin made the first of many bootprints in the lunar dust (supported from orbit by Michael Collins).
Saturn V rockets carried 24 humans to the Moon, and 12 of them walked on its surface between 1969 and 1972. Thirteen are still alive today. The youngest, all in their early 80s, are moonwalkers Charles Duke (Apollo 16) and Harrison Schmitt (Apollo 17) and Command Module Pilot Ken Mattingly (Apollo 16, and also one of the heroes who helped rescue Apollo 13). There is no single image of all the humans who have visited the Moon.
The Saturn V’s swan song was to lay the groundwork for establishing a permanent human presence in space. Skylab, launched into Earth orbit in 1973, was America’s first space station, a precursor to the current International Space Station. Skylab’s ride to orbit was a Saturn IV-B 3rd stage, launched by a Saturn 1-C and SII Saturn V stages.
This was the last launch of a Saturn V, but you can still see the three remaining giant rockets at the visitor centers at Johnson Space Center in Texas and Kennedy Space Center in Florida and at the United States Space and Rocket Center in Alabama (near Marshall Space Flight Center, one of the birthplaces of the Saturn V).
The Saturn V was retired in 1973. Work is now underway on a fleet of rockets. We are planning an uncrewed flight test of Space Launch System (SLS) rocket to travel beyond the Moon called Exploration Mission-1 (EM-1). “This is a mission that truly will do what hasn’t been done and learn what isn’t known,” said Mike Sarafin, EM-1 mission manager at NASA Headquarters in Washington.
Read the web version of this 10 Things to Know article HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Exploration is a tradition at NASA. As we work to reach for new heights and reveal the unknown for the benefit of humankind, our acting Administrator shared plans for the future during the #StateOfNASA address today, February 12, 2018 which highlights the Fiscal Year 2019 Budget proposal.
Acting Administrator Lightfoot says "This budget focuses NASA on its core exploration mission and reinforces the many ways that we return value to the U.S. through knowledge and discoveries, strengthening our economy and security, deepening partnerships with other nations, providing solutions to tough problems, and inspiring the next generation. It places NASA and the U.S. once again at the forefront of leading a global effort to advance humanity’s future in space, and draws on our nation’s great industrial base and capacity for innovation and exploration."
Read the full statement: https://www.nasa.gov/press-release/nasa-acting-administrator-statement-on-fiscal-year-2019-budget-proposal Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Sixty years ago, the hopes of Cold War America soared into the night sky as a rocket lofted skyward above Cape Canaveral, a soon-to-be-famous barrier island off the Florida coast.
1. The Original Science Robot
Sixty years ago this week, the United States sent its first satellite into space on Jan. 31, 1958. The spacecraft, small enough to be held triumphantly overhead, orbited Earth from as far as 1,594 miles (2,565 km) above and made the first scientific discovery in space. It was called, appropriately, Explorer 1.
2. Why It's Important
The world had changed three months before Explorer 1's launch, when the Soviet Union lofted Sputnik into orbit on Oct. 4, 1957. That satellite was followed a month later by a second Sputnik spacecraft. All of the missions were inspired when an international council of scientists called for satellites to be placed in Earth orbit in the pursuit of science. The Space Age was on.
3. It...Wasn't Easy
When Explorer 1 launched, we (NASA) didn't yet exist. It was a project of the U.S. Army and was built by Caltech's Jet Propulsion Laboratory (JPL) in Pasadena, California. After the Sputnik launch, the Army, Navy and Air Force were tasked by President Eisenhower with getting a satellite into orbit within 90 days. The Navy's Vanguard Rocket, the first choice, exploded on the launch pad Dec. 6, 1957.
4. The People Behind Explorer 1
University of Iowa physicist James Van Allen, whose proposal was chosen for the Vanguard satellite, had made sure his scientific instrument—a cosmic ray detector—would fit either launch vehicle. Wernher von Braun, working with the Army Ballistic Missile Agency in Alabama, directed the design of the Redstone Jupiter-C launch rocket, while JPL Director William Pickering oversaw the design of Explorer 1 and other upper stages of the rocket. JPL was also responsible for sending and receiving communications from the spacecraft.
5. All About the Science
Explorer 1's science payload took up 37.25 inches (95 cm) of the satellite's total 80.75 inches (2.05 meters). The main instruments were a cosmic-ray detector; internal, external and nose-cone temperature sensors; a micrometeorite impact microphone; a ring of micrometeorite erosion gauges; and two transmitters. There were two antennas in the body of the satellite and its four flexible whips formed a turnstile antenna that extended with the rotation of the satellite. Electrical power was provided by batteries that made up 40 percent of the total payload weight.
6. At the Center of a Space Doughnut
The first scientific discovery in space came from Explorer 1. Earth is surrounded by radiation belts of electrons and charged particles, some of them moving at nearly the speed of light, about 186,000 miles (299,000 km) per second. The two belts are shaped like giant doughnuts with Earth at the center. Data from Explorer 1 and Explorer 3 (launched March 26, 1958) led to the discovery of the inner radiation belt, while Pioneer 3 (Dec. 6, 1958) and Explorer IV (July 26, 1958) provided additional data, leading to the discovery of the outer radiation belt. The radiation belts can be hazardous for spacecraft, but they also protect the planet from harmful particles and energy from the Sun.
7. 58,376 Orbits
Explorer 1's last transmission was received May 21, 1958. The spacecraft re-entered Earth's atmosphere and burned up on March 31, 1970, after 58,376 orbits. From 1958 on, more than 100 spacecraft would fall under the Explorer designation.
8. Find Out More!
Want to know more about Explorer 1? Check out the website and download the poster celebrating 60 years of space science. go.nasa.gov/Explorer1
9. Hold the Spacecraft In Your Hands
Create your own iconic Explorer 1 photo (or re-create the original), with our Spacecraft 3D app. Follow @NASAEarth this week to see how we #ExploreAsOne. https://go.nasa.gov/2BmSCWi
10. What's Next?
All of our missions can trace a lineage to Explorer 1. This year alone, we're going to expand the study of our home planet from space with the launch of two new satellite missions (GRACE-FO and ICESat-2); we're going back to Mars with InSight; and the Transiting Exoplanet Survey Satellite (TESS) will search for planets outside our solar system by monitoring 200,000 bright, nearby stars. Meanwhile, the Parker Solar Probe will build on the work of James Van Allen when it flies closer to the Sun than any mission before.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Each year we hold a Day of Remembrance. Today, Jan. 25, we pay tribute to the crews of Apollo 1 and space shuttles Challenger and Columbia, as well as other NASA colleagues who lost their lives while furthering the cause of exploration and discovery.
Learn more about the Day of Remembrance HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
We’ve selected two finalists for a robotic mission that is planned to launch in the mid-2020s! Following a competitive peer review process, these two concepts were chosen from 12 proposals that were submitted in April under a New Frontiers program announcement opportunity.
In no particular order…
CAESAR, or the Comet Astrobiology Exploration Sample Return mission seeks to return a sample from 67P/Churyumov-Gerasimenko – the comet that was successfully explored by the European Space Agency’s Rosetta spacecraft – to determine its origin and history.
This mission would acquire a sample from the nucleus of comet Churyumov-Gerasimenko and return it safely to Earth.
Comets are made up of materials from ancient stars, interstellar clouds and the birth of our solar system, so the CAESAR sample could reveal how these materials contributed to the early Earth, including the origins of the Earth's oceans, and of life.
A drone-like rotorcraft would be sent to explore the prebiotic chemistry and habitability of dozens of sites on Saturn’s moon Titan – one of the so-called ocean worlds in our solar system.
Unique among these Ocean Worlds, Titan has a surface rich in organic compounds and diverse environments, including those where carbon and nitrogen have interacted with water and energy.
Dragonfly would be a dual-quadcopter lander that would take advantage of the environment on Titan to fly to multiple locations, some hundreds of miles apart, to sample materials and determine surface composition to investigate Titan's organic chemistry and habitability, monitor atmospheric and surface conditions, image landforms to investigate geological processes, and perform seismic studies.
The CAESAR and Dragonfly missions will receive funding through the end of 2018 to further develop and mature the concepts. It is planned that from these, one investigation will be chosen in the spring of 2019 to continue into subsequent mission phases.
That mission would be the fourth mission in the New Frontiers portfolio, which conducts principal investigator (PI)-led planetary science missions under a development cost cap of approximately $850 million. Its predecessors are the New Horizons mission to Pluto and a Kuiper Belt object, the Juno mission to Jupiter and OSIRIS-REx, which will rendezvous with and return a sample of the asteroid Bennu.
We also announced that two mission concepts were chosen to receive technology development funds to prepare them for future mission opportunities.
The Enceladus Life Signatures and Habitability (ELSAH) mission concept will receive funds to enable life detection measurements by developing cost-effective techniques to limit spacecraft contamination on cost-capped missions.
The Venus In situ Composition Investigations (VICI) mission concept will further develop the VEMCam instrument to operate under harsh conditions on Venus. The instrument uses lasers on a lander to measure the mineralogy and elemental composition of rocks on the surface of Venus.
The call for these mission concepts occurred in April and was limited to six mission themes: comet surface sample return, lunar south pole-Aitken Basin sample return, ocean worlds, Saturn probe, Trojan asteroid tour and rendezvous and Venus insitu explorer.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
SpaceX is helping the crew members aboard the International Space Station get down and nerdy as they launch their Dragon cargo spacecraft into orbit for the 13th commercial resupply mission, targeted for Dec. 15 from our Kennedy Space Center in Florida.
This super science-heavy flight will deliver experiments and equipment that will study phenomena on the Sun, materials in microgravity, space junk and more.
Here are some highlights of research that will be delivered to the station:
The Optical Fiber Production in Microgravity (Made in Space Fiber Optics) experiment demonstrates the benefits of manufacturing fiber optic filaments in a microgravity environment. This investigation will attempt to pull fiber optic wire from ZBLAN, a heavy metal fluoride glass commonly used to make fiber optic glass.
When ZBLAN is solidified on Earth, its atomic structure tends to form into crystals. Research indicates that ZBLAN fiber pulled in microgravity may not crystalize as much, giving it better optical qualities than the silica used in most fiber optic wire.
The Total and Spectral Solar Irradiance Sensor, or TSIS, monitors both total solar irradiance and solar spectral irradiance, measurements that represent one of the longest space-observed climate records. Solar irradiance is the output of light energy from the entire disk of the Sun, measured at the Earth. This means looking at the Sun in ways very similar to how we observe stars rather than as an image with details that our eye can resolve.
Understanding the variability and magnitude of solar irradiance is essential to understanding Earth’s climate.
The Space Debris Sensor (SDS) will directly measure the orbital debris environment around the space station for two to three years.
Above, see documentation of a Micro Meteor Orbital Debris strike on one of the window’s within the space station’s Cupola.
Research from this investigation could help lower the risk to human life and critical hardware by orbital debris.
Future space exploration may utilize self-assembly and self-replication to make materials and devices that can repair themselves on long duration missions.
The Advanced Colloids Experiment- Temperature-7 (ACE-T-7) investigation involves the design and assembly of 3D structures from small particles suspended in a fluid medium.
The Transparent Alloys project seeks to improve the understanding of the melting and solidification processes in plastics in microgravity. Five investigations will be conducted as a part of the Transparent Alloys project.
These European Space Agency (ESA) investigations will allow researchers to study this phenomena in the microgravity environment, where natural convection will not impact the results.
Arthrospira B, an ESA investigation, will examine the form, structure and physiology of the Arthrospira sp. algae in order to determine the reliability of the organism for future spacecraft biological life support systems.
The development of these kinds of regenerative life support systems for spaceflight could also be applied to remote locations on Earth where sustainability of materials is important.
Follow @ISS_Research on Twitter for more space science and watch the launch live on Dec. 15 at 10:36 a.m. EDT HERE!
For a regular dose of space-nerdy-goodness, follow us on Tumblr: https://nasa.tumblr.com/.
Our Milky Way galaxy is full of hundreds of billions of worlds just waiting to be found. In 2014, scientists using data from our planet-hunting Kepler space telescope discovered seven planets orbiting Kepler-90, a Sun-like star located 2,500 light-years away. Now, an eighth planet has been identified in this planetary system, making it tied with our own solar system in having the highest number of known planets. Here’s what you need to know:
Kepler-90i is a sizzling hot, rocky planet. It’s the smallest of eight planets in the Kepler-90 system. It orbits so close to its star that a “year” passes in just 14 days.
Average surface temperatures on Kepler-90i are estimated to hover around 800 degrees Fahrenheit, making it an unlikely place for life as we know it.
The Kepler-90 system is set up like our solar system, with the small planets located close to their star and the big planets farther away. This pattern is evidence that the system’s outer gas planets—which are about the size of Saturn and Jupiter—formed in a way similar to our own.
But the orbits are much more compact. The orbits of all eight planets could fit within the distance of Earth’s orbit around our Sun! Sounds crowded, but think of it this way: It would make for some great planet-hopping.
Most planets beyond our solar system are too far away to be imaged directly. The Kepler space telescope searches for these exoplanets—those planets orbiting stars beyond our solar system—by measuring how the brightness of a star changes when a planet transits, or crosses in front of its disk. Generally speaking, for a given star, the greater the dip in brightness, the bigger the planet!
Researchers trained a computer to learn how to identify the faint signal of transiting exoplanets in Kepler’s vast archive of deep-space data. A search for new worlds around 670 known multiple-planet systems using this machine-learning technique yielded not one, but two discoveries: Kepler-90i and Kepler-80g. The latter is part of a six-planet star system located 1,000 light-years away.
Kepler-90 is the first known star system besides our own that has eight planets, but scientists say it won’t be the last. Other planets may lurk around stars surveyed by Kepler. Next, researchers are using machine learning with sophisticated computer algorithms to search for more planets around 150,000 stars in the Kepler database.
Kepler is the most successful planet-hunting spacecraft to date, with more than 2,500 confirmed exoplanets and many more awaiting verification. Future space missions, like the Transiting Exoplanet Survey Satellite (TESS), the James Webb Space Telescope and Wide-Field Infrared Survey Telescope (WFIRST) will continue the search for new worlds and even tell us which ones might offer promising homes for extraterrestrial life.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
*All images of exoplanets are artist illustrations.
Simply put, an exoplanet is a planet that orbits another star.
All of the planets in our solar system orbit around the Sun. Planets that orbit around other stars outside our solar system are called exoplanets.
Just because a planet orbits a star (like Earth) does not mean that it is automatically stable for life. The planet must be within the habitable zone, which is the area around a star in which water has the potential to be liquid…aka not so close that all the water would evaporate, and not too far away where all the water would freeze.
Exoplanets are very hard to see directly with telescopes. They are hidden by the bright glare of the stars they orbit. So, astronomers use other ways to detect and study these distant planets by looking at the effects these planets have on the stars they orbit.
One way to search for exoplanets is to look for "wobbly" stars. A star that has planets doesn’t orbit perfectly around its center. From far away, this off-center orbit makes the star look like it’s wobbling. Hundreds of planets have been discovered using this method. However, only big planets—like Jupiter, or even larger—can be seen this way. Smaller Earth-like planets are much harder to find because they create only small wobbles that are hard to detect.
In 2009, we launched a spacecraft called Kepler to look for exoplanets. Kepler looked for planets in a wide range of sizes and orbits. And these planets orbited around stars that varied in size and temperature.
Kepler detected exoplanets using something called the transit method. When a planet passes in front of its star, it’s called a transit. As the planet transits in front of the star, it blocks out a little bit of the star's light. That means a star will look a little less bright when the planet passes in front of it. Astronomers can observe how the brightness of the star changes during a transit. This can help them figure out the size of the planet.
By studying the time between transits, astronomers can also find out how far away the planet is from its star. This tells us something about the planet’s temperature. If a planet is just the right temperature, it could contain liquid water—an important ingredient for life.
So far, thousands of planets have been discovered by the Kepler mission.
We now know that exoplanets are very common in the universe. And future missions have been planned to discover many more!
Next month, we’re launching an explorer-class planet finder — the Transiting Exoplanet Survey Satellite (TESS). This mission will search the entire sky for exoplanets — planets outside our solar system that orbit sun-like stars.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
On this day in 1972, two NASA astronauts landed on the Moon. Now, 45 years later, we have been instructed to return to the lunar surface.
Today at the White House, President Trump signed the Space Policy Directive 1, a change in national space policy that provides for a U.S.-led program with private sector partners for a human return to the Moon, followed by missions to Mars and beyond.
Among other dignitaries on hand for the signing, were NASA astronauts Sen. Harrison “Jack” Schmitt, Buzz Aldrin, Peggy Whitson and Christina Koch.
Schmitt landed on the moon 45 years to the minute that the policy directive was signed as part of our Apollo 17 mission, and is the most recent living person to have set foot on our lunar neighbor.
Above, at the signing ceremony instructing us to send humans back to the lunar surface, Schmitt shows First Daughter Ivanka Trump the Moon sample he collected in 1972.
The effort signed today will more effectively organize government, private industry and international efforts toward returning humans on the Moon, and will lay the foundation that will eventually enable human exploration of Mars.
To learn more, visit: https://www.nasa.gov/press-release/new-space-policy-directive-calls-for-human-expansion-across-solar-system
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The night sky has really been showing off lately. During the past week, we’ve had the chance to see some amazing sights by simply just looking up!
On Wednesday, Dec. 29, we were greeted by a flyby of the International Space Station over much of the east coast.
When the space station flies overhead, it’s usually easy to spot because it’s the third brightest object in the night sky. You can even enter your location into THIS website and get a list of dates/times when it will be flying over you!
One of our NASA Headquarters Photographers ventured to the Washington National Cathedral to capture the pass in action.
Then, on Saturday, Dec. 2, just one day before the peak of this month’s supermoon, the space station was seen passing in front of the Moon.
Captured by another NASA HQ Photographer, this composite image shows the space station, with a crew of six onboard, as its silhouette transits the Moon at roughly five miles per second.
Here’s an animated version of the transit.
To top off all of this night sky greatness, are these beautiful images of the Dec. 3 supermoon. This marked the first of three consecutive supermoons taking the celestial stage. The two others will occur on Jan. 1 and Jan. 31, 2018.
A supermoon occurs when the moon’s orbit is closest to Earth at the same time that it is full.
Are you this pilot? An aircraft taking off from Ronald Reagan National Airport is seen passing in front of the Moon as it rose on Sunday.
Learn more about the upcoming supermoons:
To learn more about what you can expect to spot in the sky this month, visit: https://solarsystem.nasa.gov/news/2017/12/04/whats-up-december-2017
Discover when the International Space Station will be visible over your area by visiting: https://spotthestation.nasa.gov/
Learn more about our Moon at: https://moon.nasa.gov/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Even the most ambitious plans start with a drawing. Visualizing a distant destination or an ambitious dream is the first step to getting there. For decades, artists working on NASA projects have produced beautiful images that stimulated the imaginations of the people working to make them a reality.
Some of them offered visualizations of spacecraft that had not yet been built; others imagined what it might look like to stand on planets that had not yet been explored. This week, we look at 10 pieces of conceptual art for our missions before they were launched–along with actual photos taken when those missions arrived at their destinations.
1. Apollo at the Moon
In 1968, an artist with our contractor North American Rockwell illustrated a phase of the Apollo lunar missions, showing the Command and Service Modules over the surface of the Moon. In 1971, an astronaut aboard the Lunar Module during Apollo 15 captured a similar scene in person with a camera.
2. Ready for Landing
This artist’s concept depicts an Apollo Lunar Module firing its descent engine above the lunar surface. At right, a photo from Apollo 12 in 1969 showing the Lunar Module Intrepid, taken by Command Module Pilot Richard Gordon.
3. Man and Machine on the Moon
Carlos Lopez, an artist with Hughes Aircraft Company, created a preview of a Surveyor spacecraft landing for our Jet Propulsion Laboratory in the early 1960s. The robotic Surveyor missions soft landed on the Moon, collecting data and images of the surface in order to ensure a safe arrival for Apollo astronauts a few years later. In the image at right, Apollo 12 astronaut Alan Bean examines the Surveyor 3 spacecraft during his second excursion on the Moon in November 1969.
4. O Pioneer!
In missions that lived up to their names, we sent the Pioneer 10 and 11 spacecraft to perform the first up-close exploration of the outer solar system. At left, an artist’s imagining of Pioneer passing Jupiter. At right, Pioneer 11’s real view of the king of planets taken in 1974.
5. The Grand Tour
An even more ambitious pair of robotic deep space adventurers followed the Pioneers. Voyager 1 and 2 both visited Jupiter and Saturn. Voyager 2 went on to Uranus and Neptune. Even the most visionary artists couldn’t imagine the exotic and beautiful vistas that the Voyager spacecraft witnessed. These images were taken between 1979 and 1989.
6. Journey to a Giant
Our Cassini spacecraft carried a passenger to the Saturn system: the European Space Agency’s Huygens probe. Huygens was designed to land on Saturn’s planet-sized moon Titan. At left is an artist’s view of Cassini sending the Huygens probe on its way toward Titan, and at right are some actual images of the giant moon from Cassini’s cameras.
7. Titan Unveiled
On Jan. 14, 2005, the Huygens probe descended through Titan’s thick haze and revealed what Titan’s surface looks like for the first time in history. Before the landing, an artist imagined the landscape (left). During the descent, Huygens’ imagers captured the actual view at four different altitudes (center)—look for the channels formed by rivers of liquid hyrdocarbons. Finally, the probe came to rest on a pebble-strewn plain (right).
8. Hazy Skies over Pluto
David Seal rendered this imaginary view from the surface of Pluto, and in the sky above, an early version of the spacecraft that came to be known as our New Horizons. At the time, Pluto was already suspected of having a thin atmosphere. That turned out be true, as seen in this dramatic backlit view of Pluto’s hazy, mountainous horizon captured by one of New Horizons’ cameras in 2015.
9. Dreams on Mars, Wheels on Mars
Long before it landed in Gale Crater, our Curiosity rover was the subject of several artistic imaginings during the years the mission was in development. Now that Curiosity is actually rolling through the Martian desert, it occasionally stops to take a self-portrait with the camera at the end of its robotic arm, which it uses like a selfie stick.
10. The World, Ceres
No one knew exactly what the dwarf planet Ceres, the largest body in the asteroid belt, looked like until our Dawn mission got there. Dawn saw a heavily cratered world—with a few surprises, such as the famous bright spots in Occator crater.
There’s more to come. Today we have carefully created artist impressions of several unexplored destinations in the solar system, including the asteroids Psyche and Bennu, and an object one billion miles past Pluto that’s now called 2014 MU69.
You can help nickname this object (or objects—there may be two) by submitting your names by Dec. 1. Our New Horizons spacecraft will fly past MU69 on New Year’s Day 2019.
Soon, we’ll once again see how nature compares to our imaginations. It’s almost always stranger and more beautiful than we thought.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Today is Small Business Saturday, an annual campaign that American Express started back in 2010 on the Saturday after Thanksgiving to support “local places that make our communities strong.”
The U.S. Senate has even taken note by passing a bipartisan resolution recognizing November 25, 2017 as Small Business Saturday: “an opportunity for all Americans to rally behind these local, independently-owned businesses and support the entrepreneurs who keep our families employed.”
Here at NASA, we look to promote and integrate small businesses across the country into the work we do to pioneer the future of space exploration, scientific discovery and aeronautics research.
Our Small Business Innovative Research (SBIR) and Small Business Technology Transfer (STTR) program seeks to fund the research, development and demonstration of innovative technologies that help address space exploration challenges and have significant potential for commercialization. In fiscal year 2017, our program awarded 567 contracts to 277 small businesses and 44 research institutions for a total of $173.5M that will enable our future missions into deep space and advancements in aviation and science, while also benefiting the U.S. economy. This year, the SBIR/STTR program’s Economic Impact Report indicated a $2.74 return for every dollar spent on awards—money well spent!
Our small business partners’ ideas have helped our work become more efficient and have advanced scientific knowledge on the International Space Station. Over 800 small businesses are contributing to the development of our Space Launch System rocket that will carry humans to deep space. SBIR/STTR program awardees are also helping the Curiosity Rover get around Mars and are even preparing the Mars 2020 Rover to search for signs of potential life on the Red Planet.
Small businesses are also contributing to scientific advances here on Earth like helping our satellites get a clearer picture of soil moisture in order to support water management, agriculture, and fire, flood and drought hazard monitoring.
In an effort to improve our understanding of the Arctic and Antarctica, a small business developed a cost-saving unmanned aircraft system that could withstand some of the coldest temperatures on the planet.
Does your small business have a big idea? Your next opportunity to join the SBIR/STTR program starts on January 11, 2018 when our latest solicitation opens.
We’ll be seeking new ideas from small businesses and research institutions for research, development and demonstration of innovative technologies. Go to www.nasa.sbir.gov to learn more.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This work features 100 images highlighting Cassini's 13-year tour at the ringed giant.
Explore our beautiful home world as seen from space.
Emblems of Exploration showcases the rich history of space and aeronautic logos.
Hubble Focus: Our Amazing Solar System showcases the wonders of our galactic neighborhood.
This book dives into the role aeronautics plays in our mission of engineering and exploration.
Making the Invisible Visible outlines the rich history of infrared astronomy.
The NASA Systems Engineering Handbook describes how we get the job done.
The space race really heats up in the third volume of famed Russian spacecraft designer Boris Chertok memoirs. Chertok, who worked under the legendary Sergey Korolev, continues his fascinating narrative on the early history of the Soviet space program, from 1961 to 1967 in Rockets and People III.
The second volume of Walking to Olympus explores the 21st century evolution of spacewalks.
Find your own great read in NASA's free e-book library.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
October 5 marks the first meeting of the National Space Council since 1993. But what is it and why does it matter? Let us explain by taking a trip back in history… We’ve teleported back to 1958…President Dwight Eisenhower is in office and the National Aeronautics and Space Council was created with the signing of the Space Act that year. President Eisenhower chaired the first National Aeronautics and Space Council (NASC). That council continued during the Kennedy, Johnson and Nixon Administrations during which we put an American in outer space with John Glenn in 1962 and put humans on the moon starting in 1969. That Council was disbanded in 1973.
In 1989, President George H.W. Bush’s Administration reinstated what was known as the National Space Council, which was designed to help chart national space policy and the roles of multiple federal agencies such as NASA. The Space Council disbanded again in 1993.
On June 30, 2017, President Trump signed an executive order reestablishing the National Space Council – which brings us to today. The current National Space Council will bring a unified national perspective on space policy to the Administration by coordinating the views of the civilian, commercial and national security sectors.
So now that you have a bit of the history…why does this matter?
With the Oct. 5 meeting, titled “Leading the Next Frontier: An Event with the National Space Council,” Vice President Mike Pence will convene this council and have participation from acting NASA Administrator Robert Lightfoot, as well as a number of Trump Administration cabinet members and senior officials, and aerospace industry leaders.
During the council’s first meeting, we will hear from experts who represent various parts of the space industry: Civil Space, Commercial Space and National Security Space.
You can watch the first meeting of the National Space Council starting at 10 a.m. EDT HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Over the course of several days, observatories and amateur astronomers will be able to spot the spacecraft. Below, 10 things to know about this incredible mission that will bring us the largest sample returned from space since the Apollo era.
OSIRIS-REx seeks answers to the questions that are central to the human experience: Where did we come from? What is our destiny? Asteroids, the leftover debris from the solar system formation process, can help us answer these questions and teach us about the history of the Sun and planets.
Yup. OSIRIS-REx stands for the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer spacecraft. The gist: It will rendezvous with, study, and return a sample of the asteroid Bennu to Earth.
While all the acronyms for each instrument may be alphabet soup, each has a job/role to perform in order to complete the mission. Explore what each one will do in this interactive webpage.
Scientists chose Bennu as the mission target because of its composition, size, and proximity to Earth. Bennu is a rare B-type asteroid (primitive and carbon-rich), which is expected to have organic compounds and water-bearing minerals like clays.
Bennu had a tough life in a rough neighborhood: the early solar system. It's an asteroid the size of a small mountain born from the rubble of a violent collision, hurled through space for millions of years and dismembered by the gravity of planets—but that's exactly what makes it a fascinating destination.
In 2018, OSIRIS-REx will approach Bennu and begin an intricate dance with the asteroid, mapping and studying Bennu in preparation for sample collection. In July 2020, the spacecraft will perform a daring maneuver in which its 11-foot arm will reach out for a five-second "high-five" to stir up surface material, collecting at least 2 ounces (60 grams) of small rocks and dust into a sample return capsule.
OSIRIS-REx launched on September 8, 2016 from Cape Canaveral, Florida on an Atlas V rocket. In March 2021, the window for departure from the asteroid will open and OSIRIS-REx will begin its return journey to Earth, arriving two-and-a-half years later in September 2023.
The sample will head to Earth inside of a return capsule with a heat shield and parachutes that will separate from the spacecraft once it enters the Earth's atmosphere. The capsule containing the sample will be collected at the Utah Test and Training Range. Once it arrives, it will be transported to NASA's Johnson Space Center in Houston for examination. For two years after the sample return (from late 2023-2025) the science team will catalog the sample and conduct the analysis needed to meet the mission science goals. NASA will preserve at least 75% of the sample at NASA's Johnson Space Flight Center in Houston for further research by scientists worldwide, including future generations of scientists.
Analyzing the sample will help scientists understand the early solar system, as well as the hazards and resources of near-Earth space. Asteroids are remnants of the building blocks that formed the planets and enabled life. Those like Bennu contain natural resources such as water, organics and metals. Future space exploration and economic development may rely on asteroids for these materials.
Journey with OSIRIS-REx as it launches, cruises, and arrives to Bennu in this interactive timeline.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Cassini spacecraft has been exploring Saturn, its stunning rings and its strange and beautiful moons for more than a decade.
Having expended almost every bit of the rocket propellant it carried to Saturn, operators are deliberately plunging Cassini into the planet to ensure Saturn’s moons will remain pristine for future exploration – in particular, the ice-covered, ocean-bearing moon Enceladus, but also Titan, with its intriguing pre-biotic chemistry.
Under its shroud of haze, Saturn’s planet-sized moon Titan hides dunes, mountains of water ice and rivers and seas of liquid methane. Of the hundreds of moons in our solar system, Titan is the only one with a dense atmosphere and large liquid reservoirs on its surface, making it in some ways more like a terrestrial planet.
Both Earth and Titan have nitrogen-dominated atmospheres – over 95% nitrogen in Titan’s case. However, unlike Earth, Titan has very little oxygen; the rest of the atmosphere is mostly methane and traced amounts of other gases, including ethane.
There are three large seas, all located close to the moon’s north pole, surrounded by numerous smaller lakes in the northern hemisphere. Just one large lake has been found in the southern hemisphere.
The moon Enceladus conceals a global ocean of salty liquid water beneath its icy surface. Some of that water even shoots out into space, creating an immense plume!
For decades, scientists didn’t know why Enceladus was the brightest world in the solar system, or how it related to Saturn’s E ring. Cassini found that both the fresh coating on its surface, and icy material in the E ring originate from vents connected to a global subsurface saltwater ocean that might host hydrothermal vents.
With its global ocean, unique chemistry and internal heat, Enceladus has become a promising lead in our search for worlds where life could exist.
Saturn’s two-toned moon Iapetus gets its odd coloring from reddish dust in its orbital path that is swept up and lands on the leading face of the moon.
The most unique, and perhaps most remarkable feature discovered on Iapetus in Cassini images is a topographic ridge that coincides almost exactly with the geographic equator. The physical origin of the ridge has yet to be explained...
It is not yet year whether the ridge is a mountain belt that has folded upward, or an extensional crack in the surface through which material from inside Iapetus erupted onto the surface and accumulated locally.
Saturn’s rings are made of countless particles of ice and dust, which Saturn’s moons push and tug, creating gaps and waves.
Scientists have never before studied the size, temperature, composition and distribution of Saturn’s rings from Saturn obit. Cassini has captured extraordinary ring-moon interactions, observed the lowest ring-temperature ever recorded at Saturn, discovered that the moon Enceladus is the source for Saturn’s E ring, and viewed the rings at equinox when sunlight strikes the rings edge-on, revealing never-before-seen ring features and details.
Cassini also studied features in Saturn’s rings called “spokes,” which can be longer than the diameter of Earth. Scientists think they’re made of thin icy particles that are lifted by an electrostatic charge and only last a few hours.
The powerful magnetic field that permeates Saturn is strange because it lines up with the planet’s poles. But just like Earth’s field, it all creates shimmering auroras.
Auroras on Saturn occur in a process similar to Earth’s northern and southern lights. Particles from the solar wind are channeled by Saturn’s magnetic field toward the planet’s poles, where they interact with electrically charged gas (plasma) in the upper atmosphere and emit light.
Saturn’s turbulent atmosphere churns with immense storms and a striking, six-sided jet stream near its north pole.
Saturn’s north and south poles are also each beautifully (and violently) decorated by a colossal swirling storm. Cassini got an up-close look at the north polar storm and scientists found that the storm’s eye was about 50 times wider than an Earth hurricane’s eye.
Unlike the Earth hurricanes that are driven by warm ocean waters, Saturn’s polar vortexes aren’t actually hurricanes. They’re hurricane-like though, and even contain lightning. Cassini’s instruments have ‘heard’ lightning ever since entering Saturn orbit in 2004, in the form of radio waves. But it wasn’t until 2009 that Cassini’s cameras captured images of Saturnian lighting for the first time.
Cassini scientists assembled a short video of it, the first video of lightning discharging on a planet other than Earth.
Cassini’s adventure will end soon because it’s almost out of fuel. So to avoid possibly ever contaminating moons like Enceladus or Titan, on Sept. 15 it will intentionally dive into Saturn’s atmosphere.
The spacecraft is expected to lose radio contact with Earth within about one to two minutes after beginning its decent into Saturn’s upper atmosphere. But on the way down, before contact is lost, eight of Cassini’s 12 science instruments will be operating! More details on the spacecraft’s final decent can be found HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Cassini spacecraft has been traveling in space for almost 20 years, exploring Saturn, its rings and even some of its moons. This mission has revealed never-before-seen events that are changing our understanding of how planetary systems form and what conditions might lead to habitats for life.
Cassini will complete its remarkable story of exploration with an intentional plunge into Saturn’s atmosphere, ending its mission.
1 p.m. EDT – News Conference from our Jet Propulsion Laboratory with a detailed preview of final mission activities Watch HERE.
4:00 - 5:00 p.m. EDT - NASA Social Live Broadcast with mission experts Watch HERE.
7:00 – 8:30 a.m. EDT – Live commentary on NASA TV and online of the spacecraft’s final dive into Saturn’s atmosphere. Watch HERE.
Around 8:00 a.m. EDT – Expected time of last signal and science data from Cassini Watch HERE.
9:30 a.m. EDT – Post-mission news conference Watch HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The Voyager 1 and 2 spacecraft explored Jupiter, Saturn, Uranus and Neptune before starting their journey toward interstellar space. Here you’ll find some of those images, including “The Pale Blue Dot” – famously described by Carl Sagan – and what are still the only up-close images of Uranus and Neptune.
These twin spacecraft took some of the very first close-up images of these planets and paved the way for future planetary missions to return, like the Juno spacecraft at Jupiter, Cassini at Saturn and New Horizons at Pluto.
Photography of Jupiter began in January 1979, when images of the brightly banded planet already exceeded the best taken from Earth. They took more than 33,000 pictures of Jupiter and its five major satellites.
Findings:
Erupting volcanoes on Jupiter's moon Io, which has 100 times the volcanic activity of Earth.
Better understanding of important physical, geological, and atmospheric processes happening in the planet, its satellites and magnetosphere.
Jupiter's turbulent atmosphere with dozens of interacting hurricane-like storm systems.
The Saturn encounters occurred nine months apart, in November 1980 and August 1981. The two encounters increased our knowledge and altered our understanding of Saturn. The extended, close-range observations provided high-resolution data far different from the picture assembled during centuries of Earth-based studies.
Findings:
Saturn’s atmosphere is almost entirely hydrogen and helium.
Subdued contrasts and color differences on Saturn could be a result of more horizontal mixing or less production of localized colors than in Jupiter’s atmosphere.
An indication of an ocean beneath the cracked, icy crust of Jupiter's moon Europa.
Winds blow at high speeds in Saturn. Near the equator, the Voyagers measured winds about 1,100 miles an hour.
The Voyager 2 spacecraft flew closely past distant Uranus, the seventh planet from the Sun. At its closest, the spacecraft came within 50,600 miles of Uranus’s cloud tops on Jan. 24, 1986. Voyager 2 radioed thousands of images and voluminous amounts of other scientific data on the planet, its moons, rings, atmosphere, interior and the magnetic environment surrounding Uranus.
Findings:
Revealed complex surfaces indicative of varying geologic pasts.
Detected 11 previously unseen moons.
Uncovered the fine detail of the previously known rings and two newly detected rings.
Showed that the planet’s rate of rotation is 17 hours, 14 minutes.
Found that the planet’s magnetic field is both large and unusual.
Determined that the temperature of the equatorial region, which receives less sunlight over a Uranian year, is nevertheless about the same as that at the poles.
Voyager 2 became the first spacecraft to observe the planet Neptune in the summer of 1989. Passing about 3,000 miles above Neptune’s north pole, Voyager 2 made its closest approach to any planet since leaving Earth 12 years ago. Five hours later, Voyager 2 passed about 25,000 miles from Neptune’s largest moon, Triton, the last solid body the spacecraft had the opportunity to study.
Findings:
Discovered Neptune’s Great Dark Spot
Found that the planet has strong winds, around 1,000 miles per hour
Saw geysers erupting from the polar cap on Neptune’s moon Triton at -390 degrees Fahrenheit
This narrow-angle color image of the Earth, dubbed ‘Pale Blue Dot’, is a part of the first ever ‘portrait’ of the solar system taken by Voyager 1.
The spacecraft acquired a total of 60 frames for a mosaic of the solar system from a distance of more than 4 billion miles from Earth and about 32 degrees above the ecliptic.
From Voyager’s great distance, Earth is a mere point of light, less than the size of a picture element even in the narrow-angle camera.
“Look again at that dot. That's here. That's home. That's us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives.” - Carl Sagan
Both spacecraft will continue to study ultraviolet sources among the stars, and their fields and particles detectors will continue to search for the boundary between the Sun's influence and interstellar space. The radioisotope power systems will likely provide enough power for science to continue through 2025, and possibly support engineering data return through the mid-2030s. After that, the two Voyagers will continue to orbit the center of the Milky Way.
Learn more about the Voyager spacecraft HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
It’s the 1970s, and we’re about to send two spacecraft (Voyager 1 & 2) into space. These two spacecraft will eventually leave our solar system and become the most distant man-made objects…ever. How can we leave our mark on them in the case that other spacefarers find them in the distant future?
The Golden Record.
We placed an ambitious message aboard Voyager 1 and 2, a kind of time capsule, intended to communicate a story of our world to extraterrestrials. The Voyager message is carried by a phonograph record, a 12-inch gold-plated copper disk containing sounds and images selected to portray the diversity of life and culture on Earth.
The Golden Record Cover
The outward facing cover of the golden record carries instructions in case it is ever found. Detailing to its discoverers how to decipher its meaning.
In the upper left-hand corner is an easily recognized drawing of the phonograph record and the stylus carried with it. The stylus is in the correct position to play the record from the beginning. Written around it in binary arithmetic is the correct time of one rotation of the record. The drawing indicates that the record should be played from the outside in.
The information in the upper right-hand portion of the cover is designed to show how the pictures contained on the record are to be constructed from the recorded signals. The top drawing shows the typical signal that occurs at the start of the picture. The picture is made from this signal, which traces the picture as a series of vertical lines, similar to ordinary television. Immediately below shows how these lines are to be drawn vertically, with staggered “interlace” to give the correct picture rendition. Below that is a drawing of an entire picture raster, showing that there are 52 vertical lines in a complete picture.
Immediately below this is a replica of the first picture on the record to permit the recipients to verify that they are decoding the signals correctly. A circle was used in this picture to ensure that the recipients use the correct ratio of horizontal to vertical height in picture reconstruction.
The drawing in the lower left-hand corner of the cover is the pulsar map previously sent as part of the plaques on Pioneers 10 and 11. It shows the location of the solar system with respect to 14 pulsars, whose precise periods are given.
The drawing containing two circles in the lower right-hand corner is a drawing of the hydrogen atom in its two lowest states, with a connecting line and digit 1 to indicate that the time interval associated with the transition from one state to the other is to be used as the fundamental time scale, both for the time given on the cover and in the decoded pictures.
The Contents
The contents of the record were selected for NASA by a committee chaired by Carl Sagan of Cornell University and his associates.
They assembled 115 images and a variety of natural sounds, such as those made by surf, wind and thunder, birds, whales and other animals. To this, they added musical selections from different cultures and eras, and spoken greetings from Earth-people in fifty-five languages, and printed messages from President Carter and U.N. Secretary General Waldheim.
Listen to some of the sounds of the Golden Record on our Soundcloud page:
Golden Record: Greetings to the Universe
Golden Record: Sounds of Earth
Songs from Chuck Berry’s “Johnny B. Goode,” to Beethoven’s Fifth Symphony are included on the golden record. For a complete list of songs, visit: https://voyager.jpl.nasa.gov/golden-record/whats-on-the-record/music/
The 115 images included on the record, encoded in analog form, range from mathematical definitions to humans from around the globe. See the images here: https://voyager.jpl.nasa.gov/golden-record/whats-on-the-record/images/
Making the Golden Record
Many people were instrumental in the design, development and manufacturing of the golden record.
Blank records were provided by the Pyral S.A. of Creteil, France. CBS Records contracted the JVC Cutting Center in Boulder, CO to cut the lacquer masters which were then sent to the James G. Lee Record Processing center in Gardena, CA to cut and gold plate eight Voyager records.
The record is constructed of gold-plated copper and is 12 inches in diameter. The record’s cover is aluminum and electroplated upon it is an ultra-pure sample of the isotope uranium-238. Uranium-238 has a half-life of 4.468 billion years.
Learn more about the golden record HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing their more-than-40-year journey since their 1977 launches, they each are much farther away from Earth and the Sun than Pluto.
The primary mission was the exploration of Jupiter and Saturn. After making a string of discoveries there – such as active volcanoes on Jupiter’s moon Io and intricacies of Saturn’s rings – the mission was extended.
Voyager 2 went on to explore Uranus and Neptune, and is still the only spacecraft to have visited those outer planets. The adventurers’ current mission, the Voyager Interstellar Mission (VIM), will explore the outermost edge of the Sun’s domain. And beyond.
‘BUS’ Housing Electronics
The basic structure of the spacecraft is called the “bus,” which carries the various engineering subsystems and scientific instruments. It is like a large ten-sided box. Each of the ten sides of the bus contains a compartment (a bay) that houses various electronic assemblies.
Cosmic Ray Subsystem (CRS)
The Cosmic Ray Subsystem (CRS) looks only for very energetic particles in plasma, and has the highest sensitivity of the three particle detectors on the spacecraft. Very energetic particles can often be found in the intense radiation fields surrounding some planets (like Jupiter). Particles with the highest-known energies come from other stars. The CRS looks for both.
High-Gain Antenna (HGA)
The High-Gain Antenna (HGA) transmits data to Earth on two frequency channels (the downlink). One at about 8.4 gigahertz, is the X-band channel and contains science and engineering data. For comparison, the FM radio band is centered around 100 megahertz.
Imaging Science Subsystem (ISS)
The Imaging Science Subsystem (ISS) is a modified version of the slow scan vidicon camera designed that were used in the earlier Mariner flights. The ISS consists of two television-type cameras, each with eight filters in a commandable Filter Wheel mounted in front of the vidicons. One has a low resolution 200 mm wide-angle lens, while the other uses a higher resolution 1500 mm narrow-angle lens.
Infrared Interferometer Spectrometer and Radiometer (IRIS)
The Infrared Interferometer Spectrometer and Radiometer (IRIS) actually acts as three separate instruments. First, it is a very sophisticated thermometer. It can determine the distribution of heat energy a body is emitting, allowing scientists to determine the temperature of that body or substance.
Second, the IRIS is a device that can determine when certain types of elements or compounds are present in an atmosphere or on a surface.
Third, it uses a separate radiometer to measure the total amount of sunlight reflected by a body at ultraviolet, visible and infrared frequencies.
Low-Energy Charged Particles (LECP)
The Low-Energy Charged Particles (LECP) looks for particles of higher energy than the Plasma Science instrument, and it overlaps with the Cosmic Ray Subsystem (CRS). It has the broadest energy range of the three sets of particle sensors.
The LECP can be imagined as a piece of wood, with the particles of interest playing the role of the bullets. The faster a bullet moves, the deeper it will penetrate the wood. Thus, the depth of penetration measures the speed of the particles. The number of “bullet holes” over time indicates how many particles there are in various places in the solar wind, and at the various outer planets. The orientation of the wood indicates the direction from which the particles came.
Magnetometer (MAG)
Although the Magnetometer (MAG) can detect some of the effects of the solar wind on the outer planets and moons, its primary job is to measure changes in the Sun’s magnetic field with distance and time, to determine if each of the outer planets has a magnetic field, and how the moons and rings of the outer planets interact with those magnetic fields.
Optical Calibration Target The target plate is a flat rectangle of known color and brightness, fixed to the spacecraft so the instruments on the movable scan platform (cameras, infrared instrument, etc.) can point to a predictable target for calibration purposes.
Photopolarimeter Subsystem (PPS)
The Photopolarimeter Subsystem (PPS) uses a 0.2 m telescope fitted with filters and polarization analyzers. The experiment is designed to determine the physical properties of particulate matter in the atmospheres of Jupiter, Saturn and the rings of Saturn by measuring the intensity and linear polarization of scattered sunlight at eight wavelengths.
The experiment also provided information on the texture and probable composition of the surfaces of the satellites of Jupiter and Saturn.
Planetary Radio Astronomy (PRA) and Plasma Wave Subsystem (PWS)
Two separate experiments, The Plasma Wave Subsystem and the Planetary Radio Astronomy experiment, share the two long antennas which stretch at right-angles to one another, forming a “V”.
Plasma Science (PLS)
The Plasma Science (PLS) instrument looks for the lowest-energy particles in plasma. It also has the ability to look for particles moving at particular speeds and, to a limited extent, to determine the direction from which they come.
The Plasma Subsystem studies the properties of very hot ionized gases that exist in interplanetary regions. One plasma detector points in the direction of the Earth and the other points at a right angle to the first.
Radioisotope Thermoelectric Generators (RTG)
Three RTG units, electrically parallel-connected, are the central power sources for the mission module. The RTGs are mounted in tandem (end-to-end) on a deployable boom. The heat source radioisotopic fuel is Plutonium-238 in the form of the oxide Pu02. In the isotopic decay process, alpha particles are released which bombard the inner surface of the container. The energy released is converted to heat and is the source of heat to the thermoelectric converter.
Ultraviolet Spectrometer (UVS)
The Ultraviolet Spectrometer (UVS) is a very specialized type of light meter that is sensitive to ultraviolet light. It determines when certain atoms or ions are present, or when certain physical processes are going on.
The instrument looks for specific colors of ultraviolet light that certain elements and compounds are known to emit.
Learn more about the Voyager 1 and 2 spacecraft HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Today we successfully tested one of our RS-25 engines, four of which will help power our Space Launch System (SLS) to deep space destinations, like Mars! This 500-second engine test concludes a summer of successful hot fire testing for flight controllers at our Stennis Space Center near Bay St. Louis, Mississippi.
The controller serves as the “brain” of the engine, communicating with SLS flight computers to ensure engines are performing at needed levels. The test marked another step toward the nation’s return to human deep-space exploration missions.
We launched a series of summer tests with a second flight controller unit hot fire at the end of May, then followed up with three additional tests. The flight controller tests are critical preparation for upcoming SLS flights to deep space– the uncrewed Exploration Mission-1 (EM-1), which will serve as the first flight for the new rocket carrying an uncrewed Orion spacecraft, and EM-2, which will transport a crew of astronauts aboard the Orion spacecraft.
Each SLS rocket is powered at launch by four RS-25 engines firing simultaneously and working in conjunction with a pair of solid rocket boosters. The engines generate a combined 2 million pounds of thrust at liftoff. With the boosters, total thrust at liftoff will exceed 8 million pounds!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.