Taggle

Find your tribe in a Sea of Creativity

Exploration - Blog Posts

3 years ago

The Big Build: Artemis I Stacks Up

Our Space Launch System (SLS) rocket is coming together at the agency’s Kennedy Space Center in Florida this summer. Our mighty SLS rocket is set to power the Artemis I mission to send our Orion spacecraft around the Moon. But, before it heads to the Moon, NASA puts it together right here on Earth.

The Big Build: Artemis I Stacks Up

Read on for more on how our Moon rocket for Artemis I will come together this summer:

Get the Base

The Big Build: Artemis I Stacks Up

How do crews assemble a rocket and spacecraft as tall as a skyscraper? The process all starts inside the iconic Vehicle Assembly Building at Kennedy with the mobile launcher. Recognized as a Florida Space Coast landmark, the Vehicle Assembly Building, or VAB, houses special cranes, lifts, and equipment to move and connect the spaceflight hardware together. Orion and all five of the major parts of the Artemis I rocket are already at Kennedy in preparation for launch. Inside the VAB, teams carefully stack and connect the elements to the mobile launcher, which serves as a platform for assembly and, later, for fueling and launching the rocket.

Start with the boosters

The Big Build: Artemis I Stacks Up

Because they carry the entire weight of the rocket and spacecraft, the twin solid rocket boosters for our SLS rocket are the first elements to be stacked on the mobile launcher inside the VAB. Crews with NASA’s Exploration Ground Systems and contractor Jacobs team completed stacking the boosters in March. Each taller than the Statue of Liberty and adorned with the iconic NASA “worm” logo, the five-segment boosters flank either side of the rocket’s core stage and upper stage. At launch, each booster produces more than 3.6 million pounds of thrust in just two minutes to quickly lift the rocket and spacecraft off the pad and to space.

Bring in the core stage

The Big Build: Artemis I Stacks Up

In between the twin solid rocket boosters is the core stage. The stage has two huge liquid propellant tanks, computers that control the rocket’s flight, and four RS-25 engines. Weighing more than 188,000 pounds without fuel and standing 212 feet, the core stage is the largest element of the SLS rocket. To place the core stage in between the two boosters, teams will use a heavy-lift crane to raise and lower the stage into place on the mobile launcher.

On launch day, the core stage’s RS-25 engines produce more than 2 million pounds of thrust and ignite just before the boosters. Together, the boosters and engines produce 8.8 million pounds of thrust to send the SLS and Orion into orbit.

Add the Launch Vehicle Stage Adapter

The Big Build: Artemis I Stacks Up

Once the boosters and core stage are secured, teams add the launch vehicle stage adapter, or LVSA, to the stack. The LVSA is a cone-shaped element that connects the rocket’s core stage and Interim Cryogenic Propulsion Stage (ICPS), or upper stage. The roughly 30-foot LVSA houses and protects the RL10 engine that powers the ICPS. Once teams bolt the LVSA into place on top of the rocket, the diameter of SLS will officially change from a wide base to a more narrow point — much like a change in the shape of a pencil from eraser to point.

Lower the Interim Cryogenic Propulsion Stage into place

The Big Build: Artemis I Stacks Up

Next in the stacking line-up is the Interim Cryogenic Propulsion Stage or ICPS. Like the LVSA, crews will lift and bolt the ICPS into place. To help power our deep space missions and goals, our SLS rocket delivers propulsion in phases. At liftoff, the core stage and solid rocket boosters will propel Artemis I off the launch pad. Once in orbit, the ICPS and its single RL10 engine will provide nearly 25,000 pounds of thrust to send our Orion spacecraft on a precise trajectory to the Moon.

Nearly there with the Orion stage adapter

The Big Build: Artemis I Stacks Up

When the Orion stage adapter crowns the top of the ICPS, you’ll know we’re nearly complete with stacking SLS rocket for Artemis I. The Orion Stage Adapter is more than just a connection point. At five feet in height, the Orion stage adapter may be small, but it holds and carries several small satellites called CubeSats. After Orion separates from the SLS rocket and heads to the Moon, these shoebox-sized payloads are released into space for their own missions to conduct science and technology research vital to deep space exploration. Compared to the rest of the rocket and spacecraft, the Orion stage adapter is the smallest SLS component that’s stacked for Artemis I.

Top it off

The Big Build: Artemis I Stacks Up

Finally, our Orion spacecraft will be placed on top of our Moon rocket inside the VAB. The final piece will be easy to spot as teams recently added the bright red NASA “worm” logotype to the outside of the spacecraft. The Orion spacecraft is much more than just a capsule built to carry crew. It has a launch abort system, which will carry the crew to safety in case of an emergency, and a service module developed by the European Space Agency that will power and propel the spacecraft during its three-week mission. On the uncrewed Artemis I mission, Orion will check out the spacecraft’s critical systems, including navigation, communications systems, and the heat shield needed to support astronauts who will fly on Artemis II and beyond.

Ready for launch!

The Big Build: Artemis I Stacks Up

The path to the pad requires many steps and check lists. Before Artemis I rolls to the launch pad, teams will finalize outfitting and other important assembly work inside the VAB. Once assembled, the integrated SLS rocket and Orion will undergo several final tests and checkouts in the VAB and on the launch pad before it’s readied for launch.

The Artemis I mission is the first in a series of increasingly complex missions that will pave the way for landing the first woman and the first person of color on the Moon. The Space Launch System is the only rocket that can send NASA astronauts aboard NASA’s Orion spacecraft and supplies to the Moon in a single mission.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
4 years ago

One Step Closer to the Moon with the Artemis Program! 🌙

One Step Closer To The Moon With The Artemis Program! 🌙

The past couple of weeks have been packed with milestones for our Artemis program — the program that will land the first woman and the next man on the Moon!

One Step Closer To The Moon With The Artemis Program! 🌙

Artemis I will be an integrated, uncrewed test of the Orion spacecraft and Space Launch System (SLS) rocket before we send crewed flights to the Moon.

One Step Closer To The Moon With The Artemis Program! 🌙

On March 2, 2021, we completed stacking the twin SLS solid rocket boosters for the Artemis I mission. Over several weeks, workers with NASA's Exploration Ground Systems used one of five massive cranes to place 10 booster segments and nose assemblies on the mobile launcher inside the Vehicle Assembly Building at the Kennedy Space Center (KSC) in Florida.

On March 18, 2021, we completed our Green Run hot fire test for the SLS core stage at Stennis Space Center in Mississippi. The core stage includes the flight computers, four RS-25 engines, and enormous propellant tanks that hold more than 700,000 gallons of super cold propellant. The test successfully ignited the core stage and produced 1.6 million pounds of thrust. The next time the core stage lights up will be when Artemis I launches on its mission to the Moon!

One Step Closer To The Moon With The Artemis Program! 🌙

In coming days, engineers will examine the data and determine if the stage is ready to be refurbished, prepared for shipment, and delivered to KSC where it will be integrated with the twin solid rocket boosters and the other rocket elements.

We are a couple steps closer to landing boots on the Moon!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

Mars Helicopter: 6 Things to Know About Ingenuity

Mars Helicopter: 6 Things To Know About Ingenuity

When our Perseverance Mars rover lands on the Red Planet on Feb. 18, 2021, it will bring along the Ingenuity helicopter.

This small-but-mighty craft is a technology demonstration that will attempt the first powered, controlled flight on another planet. Its fuselage is about the size of a tissue box, and it weighs about 4 pounds (1.8 kg) on Earth. It started out six years ago as an implausible prospect and has now passed its Earthbound tests.

Here are six things to know about Ingenuity as it nears Mars:

1. Ingenuity is an experimental flight test.

Mars Helicopter: 6 Things To Know About Ingenuity

This Mars helicopter is known as a technology demonstration, which is a project that aims to test a new capability for the first time with a limited scope. Previous technology demonstrations include Sojourner, the first Mars rover, and the Mars Cube One (MarCO) CubeStats that flew by Mars.

Ingenuity does not carry any science instruments and is not part of Perseverance’s science mission. The only objective for this helicopter is an engineering one – to demonstrate rotorcraft flight in the thin and challenging Martian atmosphere.

2. Mars won’t make it easy for Ingenuity.

Mars Helicopter: 6 Things To Know About Ingenuity

Mars’ atmosphere is around 1% the density of Earth’s. Because of that lack of density, Ingenuity has rotor blades that are much larger and spin faster than a helicopter of Ingenuity’s mass here on our planet. It also must be extremely light to travel to Mars.

The Red Planet also has incredibly cold temperatures, with nights reaching minus 130 degrees Fahrenheit (-90 degrees Celsius) in Jezero Crater, where our rover and helicopter will land. Tests on Earth at the predicted temperatures indicate Ingenuity’s parts should work as designed, but the real test will be on Mars.

3. Ingenuity relies on Perseverance for safe passage to Mars and operations on the Martian surface.

Mars Helicopter: 6 Things To Know About Ingenuity

Ingenuity is nestled sideways under Perseverance’s belly with a cover to protect the helicopter from debris during landing. The power system on the Mars 2020 spacecraft periodically charges Ingenuity’s batteries during the journey to the Red Planet.

In the first few months after landing, Perseverance will find a safe place for Ingenuity. Our rover will shed the landing cover, rotate the helicopter so its legs face the ground and gently drop it on the Martian surface.

4. Ingenuity is smart for a small robot.

Mars Helicopter: 6 Things To Know About Ingenuity

NASA’s Jet Propulsion Laboratory will not be able to control the helicopter with a joystick due to delays communicating with spacecraft across interplanetary distances. That means Ingenuity will make some of its own decisions based on parameters set by its engineering team on Earth.

During flight, Ingenuity will analyze sensor data and images of the terrain to ensure it stays on a flight path designed by project engineers.

5. The Ingenuity team counts success one step at a time.

Mars Helicopter: 6 Things To Know About Ingenuity

Ingenuity’s team has a long list of milestones the helicopter must pass before it can take off and land in the Martian atmosphere.

Surviving the journey to and landing on Mars

Safely deploying onto the Martian surface from Perseverance’s belly

Autonomously keeping warm through those intensely cold Martian nights

Autonomously charging itself with its solar panel

Successfully communicating to and from the helicopter via the Mars Helicopter Base Station on Perseverance

6. If Ingenuity succeeds, future Mars exploration could include an ambitious aerial dimension.

Mars Helicopter: 6 Things To Know About Ingenuity

The Mars helicopter intends to demonstrate technologies and first-of-its-kind operations needed for flying on Mars. If successful, these technologies and flight experience on another planet could pave the way for other advanced robotic flying vehicles.

Possible uses of a future helicopter on Mars include:

A unique viewpoint not provided by current orbiters, rovers or landers

High-definition images and reconnaissance for robots or humans

Access to terrain that is difficult for rovers to reach

Could even carry light but vital payloads from one site to another

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

Our Space Launch System Rocket’s “Green Run” Engine Testing By the Numbers

We continue to make progress toward the first launch of our Space Launch System (SLS) rocket for the Artemis I mission around the Moon. Engineers at NASA’s Stennis Space Center near Bay St. Louis, Mississippi are preparing for the last two tests of the eight-part SLS core stage Green Run test series.

The test campaign is one of the final milestones before our SLS rocket launches America’s Orion spacecraft to the Moon with the Artemis program. The SLS Green Run test campaign is a series of eight different tests designed to bring the entire rocket stage to life for the first time.

As our engineers and technicians prepare for the wet dress rehearsal and the SLS Green Run hot fire, here are some numbers to keep in mind:

image

212 Feet

The SLS rocket’s core stage is the largest rocket stage we have ever produced. From top to bottom of its four RS-25 engines, the rocket stage measures 212 feet.

image

35 Stories

For each of the Green Run tests, the SLS core stage is installed in the historic B-2 Test Stand at Stennis. The test stand was updated to accommodate the SLS rocket stage and is 35 stories tall – or almost 350 feet!

image

4 RS-25 Engines

All four RS-25 engines will operate simultaneously during the final Green Run Hot Fire. Fueled by the two propellant tanks, the cluster of engines will gimbal, or pivot, and fire for up to eight minutes just as if it were an actual Artemis launch to the Moon.

image

18 Miles

Our brawny SLS core stage is outfitted with three flight computers and special avionics systems that act as the “brains” of the rocket. It has 18 miles of cabling and more than 500 sensors and systems to help feed fuel and direct the four RS-25 engines.

image

733,000 Gallons

The stage has two huge propellant tanks that collectively hold 733,000 gallons of super-cooled liquid hydrogen and liquid oxygen. The stage weighs more than 2.3 million pounds when its fully fueled.

image

114 Tanker Trucks

It’ll take 114 trucks – 54 trucks carrying liquid hydrogen and 60 trucks carrying liquid oxygen – to provide fuel to the SLS core stage.

image

6 Propellant Barges

A series of barges will deliver the propellant from the trucks to the rocket stage installed in the test stand. Altogether, six propellant barges will send fuel through a special feed system and lines. The propellant initially will be used to chill the feed system and lines to the correct cryogenic temperature. The propellant then will flow from the barges to the B-2 Test Stand and on into the stage’s tanks.

image

100 Terabytes

All eight of the Green Run tests and check outs will produce more than 100 terabytes of collected data that engineers will use to certify the core stage design and help verify the stage is ready for launch.

For comparison, just one terabyte is the equivalent to 500 hours of movies, 200,000 five-minute songs, or 310,000 pictures!

image

32,500 holes

The B-2 Test Stand has a flame deflector that will direct the fire produced from the rocket’s engines away from the stage. Nearly 33,000 tiny, handmade holes dot the flame deflector. Why? All those minuscule holes play a huge role by directing constant streams of pressurized water to cool the hot engine exhaust.

image

One Epic First

When NASA conducts the SLS Green Run Hot Fire test at Stennis, it’ll be the first time that the SLS core stage operates just as it would on the launch pad. This test is just a preview of what’s to come for Artemis I!

The Space Launch System is the only rocket that can send NASA astronauts aboard NASA’s Orion spacecraft and supplies to the Moon in a single mission. The SLS core stage is a key part of the rocket that will send the first woman and the next man to the Moon through NASA’s Artemis program.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago
Excited About The #CountdownToMars? We've Got You Covered.

Excited about the #CountdownToMars? We've got you covered.

We've created a virtual Mars photo booth, 3D rover experience and more for you to put your own creative touch on wishing Perseverance well for her launch to the Red Planet! Check it out, HERE. 

Don’t forget to mark the July 30 launch date on your calendars! 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

What You Need to Know About Our Space Launch System (SLS) Rocket’s Green Run Test

image

The comprehensive test series called Green Run for our Space Launch System (SLS) rocket is underway at Stennis Space Center in Mississippi. 

During Green Run, the rocket’s massive, 212-foot-tall core stage — the same flight hardware that will help launch Artemis I to the Moon – will operate together for the first time. 

Here’s what you need to know about this top-to-bottom test series of our megarocket’s huge core:

The Meaning Behind the Name 

image

Why is it called Green Run? “Green” refers to the new, untested hardware (AKA the core stage), and “run” represents the succession of tests the core stage paces through. One by one, this series will bring together several “firsts” for the rocket stage as the flight hardware undergoes eight different tests. Each test is designed to gradually bring our rocket’s core stage and all its systems to life for the first time. 

So far, engineers have completed three of the series: the modal test, the avionics power-on, and the safety systems checkout. The safety systems are designed to end the test and shutdown systems automatically under undesirable conditions.

You can follow the progress of Green Run with this Green Run checklist infographic. Our team will be updating in real time as each Green Run test is completed.

Setting the Stage

image

The world’s tallest rocket stage is tested in an equally giant test stand.  We upgraded the B-2 Test Stand used for the Saturn V rocket stages during the Apollo Program and, later, for the Space Shuttle Program. Now, the B-2 Test Stand is customized for testing our SLS core stage. When all four core stage engines fire up, they can generate some serious heat. So, the B-2 Test Stand will use roughly 100,000 gallons of water every 18 seconds to protect the stand and the hardware.

Hot fire in 3, 2, 1…

image

Speaking of engines firing up, the core stage will really show what it is capable of during the grand finale of Green Run. The goal is for the entire core stage to operate as one for up to 8.5 minutes — and that includes an impressive firing of all four RS-25 engines simultaneously. Just like at launch, more than 733,000 gallons of liquid propellant will flow from the two propellant tanks through the fuel lines to feed the RS-25 engines.  When operating at sea level on the test stand, the cluster of four RS-25 engines will produce just over 1.6 million pounds of thrust – the same amount it will produce during the early phase of launch. During ascent, the core stage will produce a maximum thrust of over 2 million pounds.

Data, data, data

image

All the Green Run tests, check outs and the 100 terabytes of collected data certify the core stage design and help verify the stage is ready for launch. To put the sheer amount of data collected during Green Run into perspective, just one terabyte is the equivalent of roughly 500 hours of movies. Even the Library of Congress’s collection only amounts to a total of 15 terabytes!

Next stop: Kennedy

image

The next time our SLS rocket’s core stage fires up will be on the launch pad at Kennedy Space Center for the debut of the Artemis program. This inaugural SLS flight will be just the beginning of increasingly complex missions that will enable human exploration to the Moon and, ultimately, Mars.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Stop. Drop. And Apply to #BeAnAstronaut!

image

Feel like your place is in the stars? Are you an adventure seeker, an explorer, a person passionate about science and space? We need you!!

image

Applications are OPEN for our newest class of #Artemis astronauts. Once chosen, you could be the next person to step foot on the Moon and eventually embark on missions to Mars!

image

Do you have a friend who should apply? Tag them. Do you know someone who's still in school? Encourage them to follow their dreams and aim high.

image

To give you a sneak peak of what life will be like if you decide to #BeAnAstronaut, we’re taking you behind-the-scenes of astronaut life over the course of March. 

image

APPLY NOW AND GET MORE INFORMATION HERE! 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

What kind of things are you looking forward to as NASA gets closer to the Artemis and Gateway missions? Do you plan to be a part of them?


Tags
5 years ago

SPACE: A Global Frontier

Space is a global frontier. That’s why we partner with nations all around the world to further the advancement of science and to push the boundaries of human exploration. With international collaboration, we have sent space telescopes to observe distant galaxies, established a sustainable, orbiting laboratory 254 miles above our planet’s surface and more! As we look forward to the next giant leaps in space exploration with our Artemis lunar exploration program, we will continue to go forth with international partnerships!

Teamwork makes the dream work. Here are a few of our notable collaborations:

Artemis Program

image

Our Artemis lunar exploration program will send the first woman and the next man to the Moon by 2024. Using innovative technologies and international partnerships, we will explore more of the lunar surface than ever before and establish sustainable missions by 2028.

During these missions, the Orion spacecraft will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability and provide safe re-entry from deep space return velocities. The European Service Module, provided by the European Space Agency, will serve as the spacecraft’s powerhouse and supply it with electricity, propulsion, thermal control, air and water in space.

image

The Gateway, a small spaceship that will orbit the Moon, will be a home base for astronauts to maintain frequent and sustainable crewed missions to the lunar surface. With the help of a coalition of nations, this new spaceship will be assembled in space and built within the next decade.

Gateway already has far-reaching international support, with 14 space agencies agreeing on its importance in expanding humanity's presence on the Moon, Mars and deeper into the solar system.

International Space Station

image

The International Space Station (ISS) is one of the most ambitious international collaborations ever attempted. Launched in 1998 and involving the U.S., Russia, Canada, Japan and the participating countries of the European Space Agency — the ISS has been the epitome of global cooperation for the benefit of humankind. The largest space station ever constructed, the orbital laboratory continues to bring together international flight crews, globally distributed launches, operations, training, engineering and the world’s scientific research community.

Hubble Space Telescope 

image

The Hubble Space Telescope, one of our greatest windows into worlds light-years away, was built with contributions from the European Space Agency (ESA).

image

ESA provided the original Faint Object Camera and solar panels, and continues to provide science operations support for the telescope. 

Deep Space Network

image

The Deep Space Network (DSN) is an international array of giant radio antennas that span the world, with stations in the United States, Australia and Spain. The three facilities are equidistant approximately one-third of the way around the world from one another – to permit constant communication with spacecraft as our planet rotates. The network supports interplanetary spacecraft missions and a few that orbit Earth. It also provides radar and radio astronomy observations that improve our understanding of the solar system and the larger universe!

Mars Missions 

Information gathered today by robots on Mars will help get humans to the Red Planet in the not-too-distant future. Many of our Martian rovers – both past, present and future – are the products of a coalition of science teams distributed around the globe. Here are a few notable ones:

Curiosity Mars Rover 

image

France: ChemCam, the rover’s laser instrument that can analyze rocks from more than 20 feet away

Russia: DAN, which looks for subsurface water and water locked in minerals

Spain: REMS, the rover’s weather station

InSight Mars Lander

image

France with contributions from Switzerland: SEIS, the first seismometer on the surface of another planet

Germany: HP3, the heatflow probe that will help us understand the interior structure of Mars

Spain: APSS, the lander’s weather station

Mars 2020 Rover

image

Norway: RIMFAX, a ground-penetrating radar

France: SuperCam, the laser instrument for remote science

Spain: MEDA, the rover’s weather station

Space-Analog Astronaut Training

We partner with space agencies around the globe on space-analog missions. Analog missions are field tests in locations that have physical similarities to the extreme space environments. They take astronauts to space-like environments to prepare as international teams for near-term and future exploration to asteroids, Mars and the Moon.

image

The European Space Agency hosts the Cooperative Adventure for Valuing and Exercising human behavior and performance Skills (CAVES) mission. The two week training prepares multicultural teams of astronauts to work safely and effectively in an environment where safety is critical. The mission is designed to foster skills such as communication, problem solving, decision-making and team dynamics.

image

We host our own analog mission, underwater! The NASA Extreme Environment Mission Operations (NEEMO) project sends international teams of astronauts, engineers and scientists to live in the world’s only undersea research station, Aquarius, for up to three weeks. Here, “aquanauts” as we call them, simulate living on a spacecraft and test spacewalk techniques for future space missions in hostile environments.

International Astronautical Congress 

So, whether we’re collaborating as a science team around the globe, or shoulder-to-shoulder on a spacewalk, we are committed to working together with international partners for the benefit of all humanity! 

If you’re interested in learning more about how the global space industry works together, check out our coverage of the 70th International Astronautical Congress (IAC) happening this week in Washington, D.C. IAC is a yearly gathering in which all space players meet to talk about the advancements and progress in exploration.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

To the Moon and Beyond: Why Our SLS Rocket Is Designed for Deep Space

It will take incredible power to send the first woman and the next man to the Moon’s South Pole by 2024.  That’s where America’s Space Launch System (SLS) rocket comes in to play.

To The Moon And Beyond: Why Our SLS Rocket Is Designed For Deep Space

Providing more payload mass, volume capability and energy to speed missions through deep space than any other rocket, our SLS rocket, along with our lunar Gateway and Orion spacecraft, creates the backbone for our deep space exploration and Artemis lunar mission goals.

Here’s why our SLS rocket is a deep space rocket like no other:

It’s a heavy lifter

To The Moon And Beyond: Why Our SLS Rocket Is Designed For Deep Space

The Artemis missions will send humans 280,000 miles away from Earth. That’s 1,000 times farther into space than the International Space Station. To accomplish that mega feat, you need a rocket that’s designed to lift — and lift heavy. With help from a dynamic core stage — the largest stage we have ever built — the 5.75-million-pound SLS rocket can propel itself off the Earth. This includes the 57,000 pounds of cargo that will go to the Moon. To accomplish this, SLS will produce 15% more thrust at launch and during ascent than the Saturn V did for the Apollo Program.

We have the power 

To The Moon And Beyond: Why Our SLS Rocket Is Designed For Deep Space

Where do our rocket’s lift and thrust capabilities come from? If you take a peek under our powerful rocket’s hood, so to speak, you’ll find a core stage with four RS-25 engines that produce more than 2 million pounds of thrust alongside two solid rocket boosters that each provide another 3.6 million pounds of thrust power. It’s a bold design. Together, they provide an incredible 8.8 million pounds of thrust to power the Artemis missions off the Earth. The engines and boosters are modified heritage hardware from the Space Shuttle Program, ensuring high performance and reliability to drive our deep space missions.

A rocket with style

To The Moon And Beyond: Why Our SLS Rocket Is Designed For Deep Space

While our rocket’s core stage design will remain basically the same for each of the Artemis missions, the SLS rocket’s upper stage evolves to open new possibilities for payloads and even robotic scientific missions to worlds farther away than the Moon like Mars, Saturn and Jupiter. For the first three Artemis missions, our SLS rocket uses an interim cryogenic propulsion stage with one RL10 engine to send Orion to the lunar south pole. For Artemis missions following the initial 2024 Moon landing, our SLS rocket will have an exploration upper stage with bigger fuel tanks and four RL10 engines so that Orion, up to four astronauts and larger cargoes can be sent to the Moon, too. Additional core stages and upper stages will support either crewed Artemis missions, science missions or cargo missions for a sustained presence in deep space.

It’s just the beginning

To The Moon And Beyond: Why Our SLS Rocket Is Designed For Deep Space

Crews at our Michoud Assembly Facility in New Orleans are in the final phases of assembling the core stage for Artemis I— and are already working on assembly for Artemis II.

Through the Artemis program, we aim not just to return humans to the Moon, but to create a sustainable presence there as well. While there, astronauts will learn to use the Moon’s natural resources and harness our newfound knowledge to prepare for the horizon goal: humans on Mars.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

5 New Competitions for the Artemis Generation!

A common question we get is, “How can I work with NASA?”

The good news is—just in time for the back-to-school season—we have a slew of newly announced opportunities for citizen scientists and researchers in the academic community to take a shot at winning our prize competitions.

As we plan to land humans on the Moon by 2024 with our upcoming Artemis missions, we are urging students and universities to get involved and offer solutions to the challenges facing our path to the Moon and Mars. Here are five NASA competitions and contests waiting for your ideas on everything from innovative ways to drill for water on other planets to naming our next rover:

1. The BIG Idea Challenge: Studying Dark Regions on the Moon

Before astronauts step on the Moon again, we will study its surface to prepare for landing, living and exploring there. Although it is Earth’s closest neighbor, there is still much to learn about the Moon, particularly in the permanently shadowed regions in and near the polar regions.

image

Through the annual Breakthrough, Innovative and Game-changing (BIG) Idea Challenge, we’re asking undergraduate and graduate student teams to submit proposals for sample lunar payloads that can demonstrate technology systems needed to explore areas of the Moon that never see the light of day. Teams of up to 20 students and their faculty advisors are invited to propose unique solutions in response to one of the following areas:

• Exploration of permanently shadowed regions in lunar polar regions • Technologies to support in-situ resource utilization in these regions • Capabilities to explore and operate in permanently shadowed regions

Interested teams are encouraged to submit a Notice of Intent by September 27 in order to ensure an adequate number of reviewers and to be invited to participate in a Q&A session with the judges prior to the proposal deadline. Proposal and video submission are due by January 16, 2020.

2. RASC-AL 2020: New Concepts for the Moon and Mars

Although boots on the lunar surface by 2024 is step one in expanding our presence beyond low-Earth orbit, we’re also readying our science, technology and human exploration missions for a future on Mars.

The 2020 Revolutionary Aerospace Systems Concepts – Academic Linkage (RASC-AL) Competition is calling on undergraduate and graduate teams to develop new concepts that leverage innovations for both our Artemis program and future human missions to the Red Planet. This year’s competition branches beyond science and engineering with a theme dedicated to economic analysis of commercial opportunities in deep space.

image

Competition themes range from expanding on how we use current and future assets in cislunar space to designing systems and architectures for exploring the Moon and Mars. We’re seeking proposals that demonstrate originality and creativity in the areas of engineering and analysis and must address one of the five following themes: a south pole multi-purpose rover, the International Space Station as a Mars mission analog, short surface stay Mars mission, commercial cislunar space development and autonomous utilization and maintenance on the Gateway or Mars-class transportation.

The RASC-AL challenge is open to undergraduate and graduate students majoring in science, technology, engineering, or mathematics at an accredited U.S.-based university. Submissions are due by March 5, 2020 and must include a two-minute video and a detailed seven to nine-page proposal that presents novel and robust applications that address one of the themes and support expanding humanity’s ability to thrive beyond Earth.

3. The Space Robotics Challenge for Autonomous Rovers

Autonomous robots will help future astronauts during long-duration missions to other worlds by performing tedious, repetitive and even strenuous tasks. These robotic helpers will let crews focus on the more meticulous areas of exploring. To help achieve this, our Centennial Challenges initiative, along with Space Center Houston of Texas, opened the second phase of the Space Robotics Challenge. This virtual challenge aims to advance autonomous robotic operations for missions on the surface of distant planets or moons.

image

This new phase invites competitors 18 and older from the public, industry and academia to develop code for a team of virtual robots that will support a simulated in-situ resource utilization mission—meaning gathering and using materials found locally—on the Moon.

The deadline to submit registration forms is December 20.

4. Moon to Mars Ice & Prospecting Challenge to Design Hardware, Practice Drilling for Water on the Moon and Mars

A key ingredient for our human explorers staying anywhere other than Earth is water. One of the most crucial near-term plans for deep space exploration includes finding and using water to support a sustained presence on our nearest neighbor and on Mars.

To access and extract that water, NASA needs new technologies to mine through various layers of lunar and Martian dirt and into ice deposits we believe are buried beneath the surface. A special edition of the RASC-AL competition, the Moon to Mars Ice and Prospecting Challenge, seeks to advance critical capabilities needed on the surface of the Moon and Mars. The competition, now in its fourth iteration, asks eligible undergraduate and graduate student teams to design and build hardware that can identify, map and drill through a variety of subsurface layers, then extract water from an ice block in a simulated off-world test bed.

Interested teams are asked to submit a project plan detailing their proposed concept’s design and operations by November 14. Up to 10 teams will be selected and receive a development stipend. Over the course of six months teams will build and test their systems in preparation for a head-to-head competition at our Langley Research Center in June 2020.

5. Name the Mars 2020 Rover!

Red rover, red rover, send a name for Mars 2020 right over! We’re recruiting help from K-12 students nationwide to find a name for our next Mars rover mission.

The Mars 2020 rover is a 2,300-pound robotic scientist that will search for signs of past microbial life, characterize the planet's climate and geology, collect samples for future return to Earth, and pave the way for human exploration of the Red Planet.

K-12 students in U.S. public, private and home schools can enter the Mars 2020 Name the Rover essay contest. One grand prize winner will name the rover and be invited to see the spacecraft launch in July 2020 from Cape Canaveral Air Force Station in Florida. To enter the contest, students must submit by November 1 their proposed rover name and a short essay, no more than 150 words, explaining why their proposed name should be chosen.

Just as the Apollo program inspired innovation in the 1960s and '70s, our push to the Moon and Mars is inspiring students—the Artemis generation—to solve the challenges for the next era of space exploration.

For more information on all of our open prizes and challenges, visit: https://www.nasa.gov/solve/explore_opportunities

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

5 Out-of-this-world Facts About Our Iconic Vehicle Assembly Building!

image

The Vehicle Assembly Building, or VAB, at our Kennedy Space Center in Florida, is the only facility where assembly of a rocket occurred that carried humans beyond low-Earth orbit and on to the Moon. For 30 years, its facilities and assets were used during the Space Shuttle Program and are now available to commercial partners as part of our agency’s plan in support of a multi-user spaceport. To celebrate the VAB’s continued contribution to humanity’s space exploration endeavors, we’ve put together five out-of-this-world facts for you!

1. It’s one of the largest buildings in the world by area, the VAB covers eight acres, is 525 feet tall and 518 feet wide.

image

Aerial view of the Vehicle Assembly Building with a mobile launch tower atop a crawler transporter approaching the building. 

2. The VAB was constructed for the assembly of the Apollo/Saturn V Moon rocket, the largest rocket made by humans at the time.

image

An Apollo/Saturn V facilities Test Vehicle and Launch Umbilical Tower (LUT) atop a crawler-transporter move from the Vehicle Assembly Building (VAB) on the way to Pad A on May 25, 1966. 

3. The building is home to the largest American flag, a 209-foot-tall, 110-foot-wide star spangled banner painted on the side of the VAB.

image

Workers painting the Flag on the Vehicle Assembly Building on January 2, 2007.

4. The tallest portions of the VAB are its 4 high bays. Each has a 456-foot-high door. The doors are the largest in the world and take about 45 minutes to open or close completely.

image

A mobile launcher, atop crawler-transporter 2, begins the move into High Bay 3 at the Vehicle Assembly Building (VAB) on Sept. 8, 2018.

5. After spending more than 50 years supporting our human spaceflight programs, the VAB received its first commercial tenant – Northrop Grumman Corporation – on August 16, 2019!

image

A model of Northrop Grumman’s OmegA launch vehicle is flanked by the U.S. flag and a flag bearing the OmegA logo during a ribbon-cutting ceremony Aug. 16 in High Bay 2 of the Vehicle Assembly Building.

Whether the rockets and spacecraft are going into Earth orbit or being sent into deep space, the VAB will have the infrastructure to prepare them for their missions.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
5 years ago

How Do We Learn About a Planet’s Atmosphere?

The first confirmation of a planet orbiting a star outside our solar system happened in 1995. We now know that these worlds – also known as exoplanets – are abundant. So far, we’ve confirmed more than 4000. Even though these planets are far, far away, we can still study them using ground-based and space-based telescopes.

Our upcoming James Webb Space Telescope will study the atmospheres of the worlds in our solar system and those of exoplanets far beyond. Could any of these places support life? What Webb finds out about the chemical elements in these exoplanet atmospheres might help us learn the answer.

How do we know what’s in the atmosphere of an exoplanet?

Most known exoplanets have been discovered because they partially block the light of their suns. This celestial photo-bombing is called a transit.

image

During a transit, some of the star's light travels through the planet's atmosphere and gets absorbed.

image

The light that survives carries information about the planet across light-years of space, where it reaches our telescopes.

(However, the planet is VERY small relative to the star, and VERY far away, so it is still very difficult to detect, which is why we need a BIG telescope to be sure to capture this tiny bit of light.)

So how do we use a telescope to read light?

image

Stars emit light at many wavelengths. Like a prism making a rainbow, we can separate light into its separate wavelengths. This is called a spectrum. Learn more about how telescopes break down light here. 

image

Visible light appears to our eyes as the colors of the rainbow, but beyond visible light there are many wavelengths we cannot see.

Now back to the transiting planet...

As light is traveling through the planet's atmosphere, some wavelengths get absorbed.

image

Which wavelengths get absorbed depends on which molecules are in the planet's atmosphere. For example, carbon monoxide molecules will capture different wavelengths than water vapor molecules.

image

So, when we look at that planet in front of the star, some of the wavelengths of the starlight will be missing, depending on which molecules are in the atmosphere of the planet.

image

Learning about the atmospheres of other worlds is how we identify those that could potentially support life...

image

...bringing us another step closer to answering one of humanity's oldest questions: Are we alone?

image

Watch the full video where this method of hunting for distant planets is explained:

To learn more about NASA’s James Webb Space Telescope, visit the website, or follow the mission on Facebook, Twitter and Instagram. 

Text and graphics credit Space Telescope Science Institute

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
5 years ago

Planes, Trains and Barges: How We’re Moving Our Artemis 1 Rocket to the Launchpad

Our Space Launch System rocket is on the move this summer — literally. With the help of big and small businesses in all 50 states, various pieces of hardware are making their way to Louisiana for manufacturing, to Alabama for testing, and to Florida for final assembly. All of that work brings us closer to the launch of Artemis 1, SLS and Orion’s first mission to the Moon.

image

By land and by sea and everywhere in between, here’s why our powerful SLS rocket is truly America’s rocket:

Rollin’ on the River

image

The SLS rocket will feature the largest core stage we have ever built before. It’s so large, in fact, that we had to modify and refurbish our barge Pegasus to accommodate the massive load. Pegasus was originally designed to transport the giant external tanks of the space shuttles on the 900-mile journey from our rocket factory, Michoud Assembly Facility, in New Orleans to Kennedy Space Center in Florida. Now, our barge ferries test articles from Michoud along the river to Huntsville, Alabama, for testing at Marshall Space Flight Center. Just a week ago, the last of four structural test articles — the liquid oxygen tank — was loaded onto Pegasus to be delivered at Marshall for testing. Once testing is completed and the flight hardware is cleared for launch, Pegasus will again go to work — this time transporting the flight hardware along the Gulf Coast from New Orleans to Cape Canaveral.

Chuggin’ along

image

The massive, five-segment solid rocket boosters each weigh 1.6 million pounds. That’s the size of four blue whales! The only way to move the components for the powerful boosters on SLS from Promontory, Utah, to the Booster Fabrication Facility and Vehicle Assembly Building at Kennedy is by railway. That’s why you’ll find railway tracks leading from these assembly buildings and facilities to and from the launch pad, too. Altogether, we have about 38-mile industrial short track on Kennedy alone. Using a small fleet of specialized cars and hoppers and existing railways across the US, we can move the large, bulky equipment from the Southwest to Florida’s Space Coast. With all the motor segments complete in January, the last booster motor segment (pictured above) was moved to storage in Utah. Soon, trains will deliver all 10 segments to Kennedy to be stacked with the booster forward and aft skirts and prepared for flight.

It’s a bird, it’s a plane, no, it’s super Guppy!

image

A regular passenger airplane doesn’t have the capacity to carry the specialized hardware for SLS and our Orion spacecraft. Equipped with a unique hinged nose that can open more than 200 degrees, our Super Guppy airplane is specially designed to carry the hulking hardware, like the Orion stage adapter, to the Cape. That hinged nose means cargo is actually loaded from the front, not the back, of the airplane. The Orion stage adapter, delivered to Kennedy in 2018, joins to the rocket’s interim cryogenic propulsion stage, which will give our spacecraft the push it needs to go to the Moon on Artemis 1. It fit perfectly inside the Guppy’s cargo compartment, which is 25 feet tall and 25 feet wide and 111 feet long.

All roads lead to Kennedy

image

In the end, all roads lead to Kennedy, and the star of the transportation show is really the “crawler.” Rolling along at a delicate 1 MPH when it’s loaded with the mobile launcher, our two crawler-transporters are vital in bringing the fully assembled rocket to the launchpad for each Artemis mission. Each the size of a baseball field and powered by locomotive and large power generator engines, one crawler-transporter is able to carry 18 million pounds on the nine-mile journey to the launchpad. As of June 27, 2019, the mobile launcher atop crawler-transporter 2 made a successful final test roll to the launchpad, clearing the transporter and mobile launcher ready to carry SLS and Orion to the launchpad for Artemis 1.

Dream Team

image

It takes a lot of team work to launch Artemis 1. We are partnering with Boeing, Northrop Grumman and Aerojet Rocketdyne to produce the complex structures of the rocket. Every one of our centers and more than 1,200 companies across the United States support the development of the rocket that will launch Artemis 1 to the Moon and, ultimately, to Mars. From supplying key tools to accelerate the development of the core stage to aiding the transportation of the rocket closer to the launchpad, companies like Futuramic in Michigan and Major Tool & Machine in Indiana, are playing a vital role in returning American astronauts to the Moon. This time, to stay. To stay up to date with the latest SLS progress, click here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

How We’re Accelerating Our Missions to the Moon

image

Our Space Launch System isn’t your average rocket. It is the only rocket that can send our Orion spacecraft, astronauts and supplies to the Moon. To accomplish this mega-feat, it has to be the most powerful rocket ever built. SLS has already marked a series of milestones moving it closer to its first launch, Artemis.

Here are four highlights you need to know about — plus one more just on the horizon.

Counting Down

image

Earlier this month, Boeing technicians at our Michoud Assembly Facility in New Orleans successfully joined the top part to the core stage with the liquid hydrogen tank. The core stage will provide the most of the power to launch Artemis 1. Our 212-foot-tall core stage, the largest the we have ever built, has five major structural parts. With the addition of the liquid hydrogen tank to the forward join, four of the five parts have been bolted together. Technicians are finishing up the final part — the complex engine section — and plan to bolt it in place later this summer.  

Ready to Rumble

image

This August, to be exact. That’s when the engines for Artemis 1 will be added to the core stage. Earlier this year, all the engines for the first four SLS flights were updated with controllers, tested and officially cleared “go” for launch. We’ve saved time and money by modifying 16 RS-25 engines from the space shuttle and creating a more powerful version of the solid rocket boosters that launched the shuttle. In April, the last engine from the shuttle program finished up a four-year test series that included 32 tests at our Stennis Space Center near Bay St. Louis, Mississippi. These acceptance tests proved the engines could operate at a higher thrust level necessary for deep space travel and that new, modernized flight controllers —the “brains” of the engine — are ready to send astronauts to the Moon in 2024.

Getting a Boost

image

Our industry partners have completed the manufacture and checkout of 10 motor segments that will power two of the largest propellant boosters ever built. Just like the engines, these boosters are designed to be fast and powerful. Each booster burns six tons of propellant every second, generating a max thrust of 3.6 million pounds for two minutes of pure awesome. The boosters will finish assembly at our Kennedy Space Center in Florida and readied for the rocket’s first launch in 2020. In the meantime, we are well underway in completing the boosters for SLS and Orion’s second flight in 2022.

Come Together

image

Meanwhile, other parts of the rocket are finished and ready for the ride to the Moon. The final piece of the upper part of the rocket, the launch vehicle stage adapter, will soon head toward Kennedy Space Center in Florida. Two other pieces, including the interim cryogenic propulsion stage that will provide the power in space to send Orion on to the Moon, have already been delivered to Kennedy.

Looking to the Future

image

Our engineers evaluated thousands of designs before selecting the current SLS rocket design. Now, they are performing critical testing and using lessons learned from current assembly to ensure the initial and future designs are up to the tasks of launching exploration missions for years to come. This real-time evaluation means engineers and technicians are already cutting down on assembly time for future mission hardware, so that we and our partners can stay on target to return humans to the Moon by 2024 — to stay so we can travel on to Mars.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

6 Things You Didn’t Know About Our ‘First’ Space Flight Center

When NASA began operations on Oct. 1, 1958, we consisted mainly of the four laboratories of our predecessor, the National Advisory Committee for Aeronautics (NACA). Hot on the heels of NASA’s first day of business, we opened the Goddard Space Flight Center. Chartered May 1, 1959, and located in Greenbelt, Maryland, Goddard is home to one of the largest groups of scientists and engineers in the world. These people are building, testing and experimenting their way toward answering some of the universe’s most intriguing questions.

To celebrate 60 years of exploring, here are six ways Goddard shoots for the stars.

image

For the last 60 years, we’ve kept a close eye on our home planet, watching its atmosphere, lands and ocean.

Goddard instruments were crucial in tracking the hole in the ozone layer over Antarctica as it grew and eventually began to show signs of healing. Satellites and field campaigns track the changing height and extent of ice around the globe. Precipitation missions give us a global, near-real-time look at rain and snow everywhere on Earth. Researchers keep a record of the planet’s temperature, and Goddard supercomputer models consider how Earth will change with rising temperatures. From satellites in Earth’s orbit to field campaigns in the air and on the ground, Goddard is helping us understand our planet.

image

We seek to answer the big questions about our universe: Are we alone? How does the universe work? How did we get here?

We’re piecing together the story of our cosmos, from now all the way back to its start 13.7 billion years ago. Goddard missions have contributed to our understanding of the big bang and have shown us nurseries where stars are born and what happens when galaxies collide. Our ongoing census of planets far beyond our own solar system (several thousand known and counting!) is helping us hone in on which ones might be potentially habitable.

image

We study our dynamic Sun.

Our Sun is an active star, with occasional storms and a constant outflow of particles, radiation and magnetic fields that fill the solar system out far past the orbit of Neptune. Goddard scientists study the Sun and its activity with a host of satellites to understand how our star affects Earth, planets throughout the solar system and the nature of the very space our astronauts travel through.

image

We explore the planets, moons and small objects in the solar system and beyond. 

Goddard instruments (well over 100 in total!) have visited every planet in the solar system and continue on to new frontiers. What we’ve learned about the history of our solar system helps us piece together the mysteries of life: How did life in our solar system form and evolve? Can we find life elsewhere?

image

Over 60 years, our communications networks have enabled hundreds of NASA spacecraft to “phone home.”

Today, Goddard communications networks bring down 98 percent of our spacecraft data – nearly 30 terabytes per day! This includes not only science data, but also key information related to spacecraft operations and astronaut health. Goddard is also leading the way in creating cutting-edge solutions like laser communications that will enable exploration – faster, better, safer – for generations to come. Pew pew!

image

Exploring the unknown often means we must create new ways of exploring, new ways of knowing what we’re “seeing.” 

Goddard’s technologists and engineers must often invent tools, mechanisms and sensors to return information about our universe that we may not have even known to look for when the center was first commissioned.

image

Behind every discovery is an amazing team of people, pushing the boundaries of humanity’s knowledge. Here’s to the ones who ask questions, find answers and ask questions some more!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Mars in a Box: How a Metal Chamber on Earth Helps us do Experiments on Mars

Mars In A Box: How A Metal Chamber On Earth Helps Us Do Experiments On Mars

Inside this metal box, it’s punishingly cold. The air is unbreathable. The pressure is so low, you’d inflate like a balloon. This metal chamber is essentially Mars in a box — or a near-perfect replica of the Martian environment. This box allows scientists to practice chemistry experiments on Earth before programming NASA’s Curiosity rover to carry them out on Mars. In some cases, scientists use this chamber to duplicate experiments from Mars to better understand the results. This is what’s happening today.

The ladder is set so an engineer can climb to the top of the chamber to drop in a pinch of lab-made Martian rock. A team of scientists is trying to duplicate one of Curiosity’s first experiments to settle some open questions about the origin of certain organic compounds the rover found in Gale Crater on Mars. Today’s sample will be dropped for chemical analysis into a tiny lab inside the chamber known as SAM, which stands for Sample Analysis at Mars. Another SAM lab is on Mars, inside the belly of Curiosity. The SAM lab analyzes rock and soil samples in search of organic matter, which on Earth is usually associated with life. Mars-in-a-box is kept at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Mars In A Box: How A Metal Chamber On Earth Helps Us Do Experiments On Mars

This is Goddard engineer Ariel Siguelnitzky. He is showing how far he has to drop the sample, from the top of the test chamber to the sample collection cup, a small capsule about half an inch (1 centimeter) tall (pictured right below). On Mars, there are no engineers like Siguelnitzky, so Curiosity’s arm drops soil and rock powder through small funnels on its deck. In the photo, Siguelnitzky’s right hand is pointing to a model of the tiny lab, which is about the size of a microwave. SAM will heat the soil to 1,800 degrees Fahrenheit (1,000 degrees Celsius) to extract the gases inside and reveal the chemical elements the soil is made of. It takes about 30 minutes for the oven to reach that super high temperature.

Mars In A Box: How A Metal Chamber On Earth Helps Us Do Experiments On Mars

Each new sample is dropped into one of the white cups set into a carousel inside SAM. There are 74 tiny cups. Inside Curiosity’s SAM lab, the cups are made of quartz glass or metal. After a cup is filled, it’s lifted into an oven inside SAM for heating and analysis.

Mars In A Box: How A Metal Chamber On Earth Helps Us Do Experiments On Mars

Amy McAdam, a NASA Goddard geochemist, hands Siguelnitzky the sample. Members of the SAM team made it in the lab using Earthly ingredients that duplicate Martian rock powder. The powder is wrapped in a nickel capsule (see photo below) to protect the sample cups so they can be reused many times. On Mars, there’s no nickel capsule around the sample, which means the sample cups there can’t be reused very much.

Mars In A Box: How A Metal Chamber On Earth Helps Us Do Experiments On Mars

SAM needs as little as 45 milligrams of soil or rock powder to reveal the secrets locked in minerals and organic matter on the surface of Mars and in its atmosphere. That’s smaller than a baby aspirin!

Siguelnitzky has pressurized the chamber – raised the air pressure to match that of Earth – in order to open the hatch on top of the Mars box.

Mars In A Box: How A Metal Chamber On Earth Helps Us Do Experiments On Mars

Now, he will carefully insert the sample into SAM through one of the two small openings below the hatch. They’re about 1.5 inches (3.8 centimeters) across, the same as on Curiosity. Siguelnitzky will use a special tool to carefully insert the sample capsule about two feet down to the sample cup in the carousel.

Mars In A Box: How A Metal Chamber On Earth Helps Us Do Experiments On Mars

Sample drop.

Mars In A Box: How A Metal Chamber On Earth Helps Us Do Experiments On Mars

NASA Goddard scientist Samuel Teinturier is reviewing the chemical data, shown in the graphs, coming in from SAM inside Mars-in-a-box. He’s looking to see if the lab-made rock powder shows similar chemical signals to those seen during an earlier experiment on Mars.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Demo-1: What’s the Deal?

Whether or not you caught the SpaceX Crew Dragon launch this past weekend, here’s your chance to learn why this mission, known as Demo-1, is such a big deal.

The First of its Kind

Demo-1 is the first flight test of an American spacecraft designed for humans built and operated by a commercial company. 

Liftoff

image

The SpaceX Crew Dragon lifted off at 2:49 a.m. EST Saturday, March 2, on the company’s Falcon 9 rocket from Kennedy Space Center. 

This was the first time in history a commercially-built American crew spacecraft and rocket launched from American soil. 

A New Era in Human Spaceflight

Demo-1: What’s The Deal?

Upon seeing the arriving spacecraft, NASA astronaut Anne McClain snapped a photo from the International Space Station: “Welcome to a new era in human spaceflight.” 

Docking the Dragon

image

After making 18 orbits of Earth, the Crew Dragon spacecraft successfully attached to the International Space Station’s Harmony module at 5:51 a.m. EST Sunday, March 3. The Crew Dragon used the station’s new international docking adapter for the first time since astronauts installed it in August 2016. 

The docking phase, in addition to the return and recovery of Crew Dragon, are critical to understanding the system’s ability to support crew flights.

Opening the Hatch

Demo-1: What’s The Deal?

After opening the hatch between the two spacecraft, the crewmates configured Crew Dragon for its stay. 

They installed a ventilation system that cycles air from Crew Dragon to the station, installed window covers and checked valves. After that, the crew was all set for a welcoming ceremony for the visiting vehicle. 

Ripley and Little Earth

Demo-1: What’s The Deal?

Although the test is uncrewed, that doesn’t mean the Crew Dragon is empty. Along for the ride was Ripley, a lifelike test device outfitted with sensors to provide data about potential effects on future astronauts. (There is also a plush Earth doll included inside that can float in the microgravity!)

Inside the Dragon

For future operational missions, Crew Dragon will be able to launch as many as four crew members and carry more than 220 pounds of cargo. This will increase the number of astronauts who are able to live onboard the station, which will create more time for research in the unique microgravity environment.

Integration

Demo-1: What’s The Deal?

Since the arrival of SpaceX Crew Dragon, the three Expedition 58 crew members have returned to normal operations (with some new additions to the team!) 

Undocking

image

The Crew Dragon is designed to stay docked to station for up to 210 days, although the spacecraft used for this flight test will remain docked to the space station for only five days, departing Friday, March 8. (We will be providing live coverage — don’t miss it!)

SpaceX and NASA

image

Elon Musk, CEO and lead designer at SpaceX, expressed appreciation for NASA’s support: “SpaceX would not be here without NASA, without the incredible work that was done before SpaceX even started and without the support after SpaceX did start.”

Preparation for Demo-2

image

NASA and SpaceX will use data from Demo-1 to further prepare for Demo-2, the crewed flight test that will carry NASA astronauts and Doug Hurley and Bob Behnken to the International Space Station. NASA will validate the performance of SpaceX’s systems before putting crew on board for the Demo-2 flight, currently targeted for July 2019.

Demo-1: So What?

image

Demo-1 is a big deal because it demonstrates NASA and commercial companies working together to advance future space exploration! With Demo-1’s success, NASA and SpaceX will begin to prepare to safely fly astronauts to the orbital laboratory.

Follow along with mission updates with the Space Station blog.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

These 9 Companies Could Help Us Send the Next Robotic Landers to the Moon

We sent the first humans to land on the Moon in 1969. Since then, only of 12 men have stepped foot on the lunar surface – but we left robotic explorers behind to continue gathering science data. And now, we’re preparing to return. Establishing a sustained presence on and near the Moon will help us learn to live off of our home planet and prepare for travel to Mars.

image

To help establish ourselves on and near the Moon, we are working with a few select American companies. We will buy space on commercial robotic landers, along with other customers, to deliver our payloads to the lunar surface. We’re even developing lunar instruments and tools that will fly on missions as early as 2019!

image

Through partnerships with American companies, we are leading a flexible and sustainable approach to deep space missions. These early commercial delivery missions will also help inform new space systems we build to send humans to the Moon in the next decade. Involving American companies and stimulating the space market with these new opportunities to send science instruments and new technologies to deep space will be similar to how we use companies like Northrop Grumman and SpaceX to send cargo to the International Space Station now. These selected companies will provide a rocket and cargo space on their robotic landers for us (and others!) to send science and technology to our nearest neighbor.

So who are these companies that will get to ferry science instruments and new technologies to the Moon?

Here’s a digital “catalogue” of the organizations and their spacecraft that will be available for lunar services over the next decade:

Astrobotic Technology, Inc.

Pittsburg, PA

image

Deep Space Systems

Littleton, CO

image

Firefly Aerospace, Inc.

Cedar Park, TX

image

Intuitive Machines, LLC

Houston, TX

image

Lockheed Martin Space

Littleton, CO

image

Masten Space Systems, Inc.

Mojave, CA

image

Moon Express, Inc.

Cape Canaveral, FL

image

Orbit Beyond, Inc.

Edison, NJ

image

Draper, Inc.

Cambridge, MA

image

We are thrilled to be working with these companies to enable us to investigate the Moon in new ways. In order to expand humanity’s presence beyond Earth, we need to return to the Moon before we go to Mars.

The Moon helps us to learn how to live and work on another planetary body while being only three days away from home – instead of several months. The Moon also holds enormous potential for testing new technologies, like prospecting for water ice and turning it into drinking water, oxygen and rocket fuel. Plus, there’s so much science to be done!

image

The Moon can help us understand the early history of the solar system, how planets migrated to their current formation and much more. Understanding how the Earth-Moon system formed is difficult because those ancient rocks no longer exist here on Earth. They have been recycled by plate tectonics, but the Moon still has rocks that date back to the time of its formation! It’s like traveling to a cosmic time machine!

Join us on this exciting journey as we expand humanity’s presence beyond Earth.

Learn more about the Moon and all the surprises it may hold: https://moon.nasa.gov

Find out more about today’s announcement HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

World Teacher Appreciation Day!

On #WorldTeachersDay, we are recognizing our two current astronauts who are former classroom teachers, Joe Acaba and Ricky Arnold, as well as honoring teachers everywhere. What better way to celebrate than by learning from teachers who are literally out-of-this-world!

During the past Year of Education on Station, astronauts connected with more than 175,000 students and 40,000 teachers during live Q & A sessions. 

Let’s take a look at some of the questions those students asked:

The view from space is supposed to be amazing. Is it really that great and could you explain? 

Taking a look at our home planet from the International Space Station is one of the most fascinating things to see! The views and vistas are unforgettable, and you want to take everyone you know to the Cupola (window) to experience this. Want to see what the view is like? Check out earthkam to learn more.

What kind of experiments do you do in space?

There are several experiments that take place on a continuous basis aboard the orbiting laboratory - anything from combustion to life sciences to horticulture. Several organizations around the world have had the opportunity to test their experiments 250 miles off the surface of the Earth. 

What is the most overlooked attribute of an astronaut?

If you are a good listener and follower, you can be successful on the space station. As you work with your team, you can rely on each other’s strengths to achieve a common goal. Each astronaut needs to have expeditionary skills to be successful. Check out some of those skills here. 

Are you able to grow any plants on the International Space Station?

Nothing excites Serena Auñón-Chancellor more than seeing a living, green plant on the International Space Station. She can’t wait to use some of the lettuce harvest to top her next burger! Learn more about the plants that Serena sees on station here. 

What food are you growing on the ISS and which tastes the best? 

While aboard the International Space Station, taste buds may not react the same way as they do on earth but the astronauts have access to a variety of snacks and meals. They have also grown 12 variants of lettuce that they have had the opportunity to taste.

Learn more about Joe Acaba, Ricky Arnold, and the Year of Education on Station.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Sixty Years of Exploration, Innovation, and Discovery!

image

Exactly sixty years ago today, we opened our doors for the first time. And since then, we have opened up a universe of discovery and innovation. 

There are so many achievements to celebrate from the past six decades, there’s no way we can go through all of them. If you want to dive deeper into our history of exploration, check out NASA: 60 Years and Counting. 

In the meantime, take a moonwalk down memory lane with us while we remember a few of our most important accomplishments from the past sixty years!

image

In 1958, President Eisenhower signed the National Aeronautics and Space Act, which effectively created our agency. We officially opened for business on October 1. 

To learn more about the start of our space program, watch our video: How It All Began. 

image

Alongside the U.S. Air Force, we implemented the X-15 hypersonic aircraft during the 1950s and 1960s to improve aircraft and spacecraft. 

The X-15 is capable of speeds exceeding Mach 6 (4,500 mph) at altitudes of 67 miles, reaching the very edge of space. 

Dubbed the “finest and most productive research aircraft ever seen,” the X-15 was officially retired on October 24, 1968. The information collected by the X-15 contributed to the development of the Mercury, Gemini, Apollo, and Space Shuttle programs. 

To learn more about how we have revolutionized aeronautics, watch our Leading Edge of Flight video. 

image

On July 20, 1969, Neil Armstrong and Buzz Aldrin became the first humans to walk on the moon. The crew of Apollo 11 had the distinction of completing the first return of soil and rock samples from beyond Earth. 

Astronaut Gene Cernan, during Apollo 17, was the last person to have walked on the surface of the moon. (For now!)

The Lunar Roving Vehicle was a battery-powered rover that the astronauts used during the last three Apollo missions. 

To learn more about other types of technology that we have either invented or improved, watch our video: Trailblazing Technology.

image

Our long-term Earth-observing satellite program began on July 23, 1972 with the launch of Landsat 1, the first in a long series (Landsat 9 is expected to launch in 2020!) We work directly with the U.S. Geological Survey to use Landsat to monitor and manage resources such as food, water, and forests. 

Landsat data is one of many tools that help us observe in immense detail how our planet is changing. From algae blooms to melting glaciers to hurricane flooding, Landsat is there to help us understand our own planet better. 

Off the Earth, for the Earth.

To learn more about how we contribute to the Earth sciences, watch our video: Home, Sweet Home. 

image

Space Transportation System-1, or STS-1, was the first orbital spaceflight of our Space Shuttle program. 

The first orbiter, Columbia, launched on April 12, 1981. Over the next thirty years, Challenger, Discovery, Atlantis, and Endeavour would be added to the space shuttle fleet. 

Together, they flew 135 missions and carried 355 people into space using the first reusable spacecraft.

image

On January 16, 1978, we selected a class of 35 new astronauts--including the first women and African-American astronauts. 

And on June 18, 1983, Sally Ride became the first American woman to enter space on board Challenger for STS-7. 

To learn more about our astronauts, then and now, watch our Humans in Space video.

image

Everybody loves Hubble! The Hubble Space Telescope was launched into orbit on April 24, 1990, and has been blowing our minds ever since. 

Hubble has not only captured stunning views of our distant stars and galaxies, but has also been there for once-in-a-lifetime cosmic events. For example, on January 6, 2010, Hubble captured what appeared to be a head-on collision between two asteroids--something no one has ever seen before.

In this image, Hubble captures the Carina Nebula illuminating a three-light-year tall pillar of gas and dust. 

To learn more about how we have contributed to our understanding of the solar system and beyond, watch our video: What’s Out There?

image

Cooperation to build the International Space Station began in 1993 between the United States, Russia, Japan, and Canada. 

The dream was fully realized on November 2, 2000, when Expedition 1 crew members boarded the station, signifying humanity’s permanent presence in space!

Although the orbiting lab was only a couple of modules then, it has grown tremendously since then! 

To learn more about what’s happening on the orbiting outpost today, visit the Space Station page.

image

We have satellites in the sky, humans in orbit, and rovers on Mars. Very soon, we will be returning humankind to the Moon, and using it as a platform to travel to Mars and beyond.

And most importantly, we bring the universe to you. 

What are your favorite NASA moments? We were only able to share a few of ours here, but if you want to learn about more important NASA milestones, check out 60 Moments in NASA History or our video, 60 Years in 60 Seconds. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Why Bennu? 10 Reasons

After traveling for two years and billions of kilometers from Earth, the OSIRIS-REx probe is only a few months away from its destination: the intriguing asteroid Bennu. When it arrives in December, OSIRIS-REx will embark on a nearly two-year investigation of this clump of rock, mapping its terrain and finding a safe and fruitful site from which to collect a sample.

The spacecraft will briefly touch Bennu’s surface around July 2020 to collect at least 60 grams (equal to about 30 sugar packets) of dirt and rocks. It might collect as much as 2,000 grams, which would be the largest sample by far gathered from a space object since the Apollo Moon landings. The spacecraft will then pack the sample into a capsule and travel back to Earth, dropping the capsule into Utah's west desert in 2023, where scientists will be waiting to collect it.

This years-long quest for knowledge thrusts Bennu into the center of one of the most ambitious space missions ever attempted. But the humble rock is but one of about 780,000 known asteroids in our solar system. So why did scientists pick Bennu for this momentous investigation? Here are 10 reasons:

1. It's close to Earth

image

Unlike most other asteroids that circle the Sun in the asteroid belt between Mars and Jupiter, Bennu’s orbit is close in proximity to Earth's, even crossing it. The asteroid makes its closest approach to Earth every 6 years. It also circles the Sun nearly in the same plane as Earth, which made it somewhat easier to achieve the high-energy task of launching the spacecraft out of Earth's plane and into Bennu's. Still, the launch required considerable power, so OSIRIS-REx used Earth’s gravity to boost itself into Bennu’s orbital plane when it passed our planet in September 2017.

2. It's the right size

image

Asteroids spin on their axes just like Earth does. Small ones, with diameters of 200 meters or less, often spin very fast, up to a few revolutions per minute. This rapid spinning makes it difficult for a spacecraft to match an asteroid's velocity in order to touch down and collect samples. Even worse, the quick spinning has flung loose rocks and soil, material known as "regolith" — the stuff OSIRIS-REx is looking to collect — off the surfaces of small asteroids. Bennu’s size, in contrast, makes it approachable and rich in regolith. It has a diameter of 492 meters, which is a bit larger than the height of the Empire State Building in New York City, and rotating once every 4.3 hours.

3. It's really old

image

Bennu is a leftover fragment from the tumultuous formation of the solar system. Some of the mineral fragments inside Bennu could be older than the solar system. These microscopic grains of dust could be the same ones that spewed from dying stars and eventually coalesced to make the Sun and its planets nearly 4.6 billion years ago. But pieces of asteroids, called meteorites, have been falling to Earth's surface since the planet formed. So why don't scientists just study those old space rocks? Because astronomers can't tell (with very few exceptions) what kind of objects these meteorites came from, which is important context. Furthermore, these stones, that survive the violent, fiery decent to our planet's surface, get contaminated when they land in the dirt, sand, or snow. Some even get hammered by the elements, like rain and snow, for hundreds or thousands of years. Such events change the chemistry of meteorites, obscuring their ancient records.

4. It's well preserved

image

Bennu, on the other hand, is a time capsule from the early solar system, having been preserved in the vacuum of space. Although scientists think it broke off a larger asteroid in the asteroid belt in a catastrophic collision between about 1 and 2 billion years ago, and hurtled through space until it got locked into an orbit near Earth's, they don’t expect that these events significantly altered it.

5. It might contain clues to the origin of life

image

Analyzing a sample from Bennu will help planetary scientists better understand the role asteroids may have played in delivering life-forming compounds to Earth. We know from having studied Bennu through Earth- and space-based telescopes that it is a carbonaceous, or carbon-rich, asteroid. Carbon is the hinge upon which organic molecules hang. Bennu is likely rich in organic molecules, which are made of chains of carbon bonded with atoms of oxygen, hydrogen, and other elements in a chemical recipe that makes all known living things. Besides carbon, Bennu also might have another component important to life: water, which is trapped in the minerals that make up the asteroid.

6. It contains valuable materials

image

Besides teaching us about our cosmic past, exploring Bennu close-up will help humans plan for the future. Asteroids are rich in natural resources, such as iron and aluminum, and precious metals, such as platinum. For this reason, some companies, and even countries, are building technologies that will one day allow us to extract those materials. More importantly, asteroids like Bennu are key to future, deep-space travel. If humans can learn how to extract the abundant hydrogen and oxygen from the water locked up in an asteroid’s minerals, they could make rocket fuel. Thus, asteroids could one day serve as fuel stations for robotic or human missions to Mars and beyond. Learning how to maneuver around an object like Bennu, and about its chemical and physical properties, will help future prospectors.

7. It will help us better understand other asteroids

image

Astronomers have studied Bennu from Earth since it was discovered in 1999. As a result, they think they know a lot about the asteroid's physical and chemical properties. Their knowledge is based not only on looking at the asteroid, but also studying meteorites found on Earth, and filling in gaps in observable knowledge with predictions derived from theoretical models. Thanks to the detailed information that will be gleaned from OSIRIS-REx, scientists now will be able to check whether their predictions about Bennu are correct. This work will help verify or refine telescopic observations and models that attempt to reveal the nature of other asteroids in our solar system.

8. It will help us better understand a quirky solar force ...

image

Astronomers have calculated that Bennu’s orbit has drifted about 280 meters (0.18 miles) per year toward the Sun since it was discovered. This could be because of a phenomenon called the Yarkovsky effect, a process whereby sunlight warms one side of a small, dark asteroid and then radiates as heat off the asteroid as it rotates. The heat energy thrusts an asteroid either away from the Sun, if it has a prograde spin like Earth, which means it spins in the same direction as its orbit, or toward the Sun in the case of Bennu, which spins in the opposite direction of its orbit. OSIRIS-REx will measure the Yarkovsky effect from close-up to help scientists predict the movement of Bennu and other asteroids. Already, measurements of how this force impacted Bennu over time have revealed that it likely pushed it to our corner of the solar system from the asteroid belt.

9. ... and to keep asteroids at bay

image

One reason scientists are eager to predict the directions asteroids are drifting is to know when they're coming too-close-for-comfort to Earth. By taking the Yarkovsky effect into account, they’ve estimated that Bennu could pass closer to Earth than the Moon is in 2135, and possibly even closer between 2175 and 2195. Although Bennu is unlikely to hit Earth at that time, our descendants can use the data from OSIRIS-REx to determine how best to deflect any threatening asteroids that are found, perhaps even by using the Yarkovsky effect to their advantage.

10. It's a gift that will keep on giving

Samples of Bennu will return to Earth on September 24, 2023. OSIRIS-REx scientists will study a quarter of the regolith. The rest will be made available to scientists around the globe, and also saved for those not yet born, using techniques not yet invented, to answer questions not yet asked.

Read the web version of this week’s “Solar System: 10 Things to Know” article HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags