Taggle

Find your tribe in a Sea of Creativity

Mars - Blog Posts

8 years ago

Solar System: Things to Know This Week

Learn the latest on Cassini’s Grand Finale, Pluto, Hubble Space Telescope and the Red Planet.

1. Cassini’s Grand Finale

image

After more than 12 years at Saturn, our Cassini mission has entered the final year of its epic voyage to the giant planet and its family of moons. But the journey isn't over. The upcoming months will be like a whole new mission, with lots of new science and a truly thrilling ride in the unexplored space near the rings. Later this year, the spacecraft will fly repeatedly just outside the rings, capturing the closest views ever. Then, it will actually orbit inside the gap between the rings and the planet's cloud tops.

Get details on Cassini’s final mission

The von Kármán Lecture Series: 2016

2. Chandra X-Rays Pluto

image

As the New Horizon’s mission headed to Pluto, our Chandra X-Ray Observatory made the first detection of the planet in X-rays. Chandra’s observations offer new insight into the space environment surrounding the largest and best-known object in the solar system’s outermost regions.

See Pluto’s X-Ray

3. ... And Then Pluto Painted the Town Red

image

When the cameras on our approaching New Horizons spacecraft first spotted the large reddish polar region on Pluto's largest moon, Charon, mission scientists knew two things: they'd never seen anything like it before, and they couldn't wait to get the story behind it. After analyzing the images and other data that New Horizons has sent back from its July 2015 flight through the Pluto system, scientists think they've solved the mystery. Charon's polar coloring comes from Pluto itself—as methane gas that escapes from Pluto's atmosphere and becomes trapped by the moon's gravity and freezes to the cold, icy surface at Charon's pole.

Get the details

4. Pretty as a Postcard

image

The famed red-rock deserts of the American Southwest and recent images of Mars bear a striking similarity. New color images returned by our Curiosity Mars rover reveal the layered geologic past of the Red Planet in stunning detail. 

More images

5. Things Fall Apart

image

Our Hubble Space Telescope recently observed a comet breaking apart. In a series of images taken over a three-day span in January 2016, Hubble captured images of 25 building-size blocks made of a mixture of ice and dust drifting away from the comet. The resulting debris is now scattered along a 3,000-mile-long trail, larger than the width of the continental U.S.

Learn more

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Mission Possible: Redirecting an Asteroid

As part of our Asteroid Redirect Mission (ARM), we plan to send a robotic spacecraft to an asteroid tens of millions of miles away from Earth, capture a multi-ton boulder and bring it to an orbit near the moon for future crew exploration.

image

This mission to visit a large near-Earth asteroid is part of our plan to advance the new technologies and spaceflight experience needed for a human mission to the Martian system in the 2030s.

How exactly will it work?

The robotic spacecraft, powered by the most advanced solar electric propulsion system, will travel for about 18 months to the target asteroid.

image

After the spacecraft arrives and the multi-ton boulder is collected from the surface, the spacecraft will hover near the asteroid to create a gravitational attraction that will slightly change the asteroid’s trajectory.

image

After the enhanced gravity tractor demonstration is compete, the robotic vehicle will deliver the boulder into a stable orbit near the moon. During the transit, the boulder will be further imaged and studied by the spacecraft.

image

Astronauts aboard the Orion spacecraft will launch on the Space Launch System rocket to explore the returned boulder.

image

Orion will dock with the robotic vehicle that still has the boulder in its grasp. 

image

While docked, two crew members on spacewalks will explore the boulder and collect samples to bring back to Earth for further study.

image

The astronauts and collected samples will return to Earth in the Orion spacecraft.

How will ARM help us send humans to Mars in the 2030s?

image

This mission will demonstrate future Mars-level exploration missions closer to home and will fly a mission with technologies and real life operational constraints that we’ll encounter on the way to the Red Planet. A few of the capabilities it will help us test include: 

Solar Electric Propulsion – Using advanced Solar Electric Propulsion (SEP) technologies is an important part of future missions to send larger payloads into deep space and to the Mars system. Unlike chemical propulsion, which uses combustion and a nozzle to generate thrust, SEP uses electricity from solar arrays to create electromagnetic fields to accelerate and expel charged atoms (ions) to create a very low thrust with a very efficient use of propellant.

Trajectory and Navigation – When we move the massive asteroid boulder using low-thrust propulsion and leveraging the gravity fields of Earth and the moon, we’ll validate critical technologies for the future Mars missions. 

Advances in Spacesuits – Spacesuits designed to operate in deep space and for the Mars surface will require upgrades to the portable life support system (PLSS). We are working on advanced PLSS that will protect astronauts on Mars or in deep space by improving carbon dioxide removal, humidity control and oxygen regulation. We are also improving mobility by evaluating advances in gloves to improve thermal capacity and dexterity. 

Sample Collection and Containment Techniques – This experience will help us prepare to return samples from Mars through the development of new techniques for safe sample collection and containment. These techniques will ensure that humans do not contaminate the samples with microbes from Earth, while protecting our planet from any potential hazards in the samples that are returned. 

Rendezvous and Docking Capabilities – Future human missions to Mars will require new capabilities to rendezvous and dock spacecraft in deep space. We will advance the current system we’ve developed with the international partners aboard the International Space Station. 

Moving from spaceflight a couple hundred miles off Earth to the proving ground environment (40,000 miles beyond the moon) will allow us to start accumulating experience farther than humans have ever traveled in space.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Splish, Splash, Orion Takes a Bath

The Orion spacecraft is a capsule built to take humans farther than they’ve ever gone before, to deep space and eventually Mars. But before astronauts travel inside this new vehicle, we have to perform tests to ensure their safety.

image

One of these tests that we’ll talk about today simulates an ocean splashdown. Water impact testing helps us evaluate how Orion may behave when landing under its parachutes in different wind conditions and wave heights. The spacecraft has been undergoing a series of these tests at our Langley Research Center’s Hydro Impact Basin…which is our fancy way of saying pool.

image

The test capsule, coupled with the heat shield from Orion’s first spaceflight, swung like a pendulum into Langley’s 20-foot-deep basin on Aug. 25.

image

Inside the capsule were two test dummies – one representing a 105-pound woman and the other, a 220-pound man — each wearing spacesuits equipped with sensors. These sensors will provide critical data that will help us understand the forces crew members could experience when they splash down in the ocean.

This specific drop was the ninth in a series of 10 tests taking place at Langley’s Landing and Impact Research Facility. It was designed to simulate one of the Orion spacecraft’s most stressful landing scenarios, a case where one of the capsule’s three main parachutes fails to deploy. That would cause Orion to approach its planned water landing faster than normal and at an undesirable angle.

Under ideal conditions, the Orion capsule would slice into the water of the Pacific Ocean traveling about 17 miles per hour. This test had it hitting the pool at about 20 mph, and in a lateral orientation. Instead of being pushed down into their seats, astronauts in this scenario would splashdown to the side.

With this test’s success and one final drop in this series scheduled for mid-September, researchers have accumulated a lot of important information.

To find out more, visit nasa.gov or follow @nasaorion​ on Tumblr, Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Solar System: From TED Talks to Data Releases

Let us lead you on a journey of our solar system. Here are some things to know this week:

1. NASA-Funded Research

image

It’s all just a click way with the launch of a new public access site, which reflects our ongoing commitment to provide public access to science data.

Start Exploring!

2.  Red Planet Reconnaissance 

image

One of the top places in our solar system to look for signs of past or current life is Mars. Through our robotic missions, we have been on and around Mars for 40 years. These orbiters, landers and rovers are paving the way for human exploration.

Meet the Mars robots

3. Three Moons and a Planet that Could Have Alien Life

image

In a presentation at TED Talks Live, our director of planetary science, Jim Green, discusses the best places to look for alien life in our solar system.

Watch the talk

4. Setting Free a Dragon

image

Tune in to NASA TV on Friday, Aug. 26 at 5:45 a.m. EDT for coverage of the release of the SpaceX Dragon CRS-9 cargo ship from the International Space Station.

Watch live

5. Anniversary Ring(s)

image

Aug. 26 marks 35 years since Voyager probe flew by Saturn, delighting scientists with rich data and images. Today, thanks to our Cassini spacecraft, we know much more about the ringed planet.

Learn more about Cassini’s mission to Saturn

Learn more about Voyager 2

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Getting to Mars: 4 Things We’re Doing Now

We’re working hard to send humans to Mars in the 2030s. Here are just a few of the things we’re doing now that are helping us prepare for the journey:

1. Research on the International Space Station

image

The International Space Station is the only microgravity platform for the long-term testing of new life support and crew health systems, advanced habitat modules and other technologies needed to decrease reliance on Earth.

image

When future explorers travel to the Red Planet, they will need to be able to grow plants for food, atmosphere recycling and physiological benefits. The Veggie experiment on space station is validating this technology right now! Astronauts have grown lettuce and Zinnia flowers in space so far.

image

The space station is also a perfect place to study the impacts of microgravity on the human body. One of the biggest hurdles of getting to Mars in ensuring that humans are “go” for a long-duration mission. Making sure that crew members will maintain their health and full capabilities for the duration of a Mars mission and after their return to Earth is extremely important. 

image

Scientists have solid data about how bodies respond to living in microgravity for six months, but significant data beyond that timeframe had not been collected…until now! Former astronaut Scott Kelly recently completed his Year in Space mission, where he spent a year aboard the space station to learn the impacts of microgravity on the human body.

A mission to Mars will likely last about three years, about half the time coming and going to Mars and about half the time on the Red Planet. We need to understand how human systems like vision and bone health are affected and what countermeasures can be taken to reduce or mitigate risks to crew members.

2. Utilizing Rovers & Tech to Gather Data

image

Through our robotic missions, we have already been on and around Mars for 40 years! Before we send humans to the Red Planet, it’s important that we have a thorough understanding of the Martian environment. Our landers and rovers are paving the way for human exploration. For example, the Mars Reconnaissance Orbiter has helped us map the surface of Mars, which will be critical in selecting a future human landing site on the planet.

image

Our Mars 2020 rover will look for signs of past life, collect samples for possible future return to Earth and demonstrate technology for future human exploration of the Red Planet. These include testing a method for producing oxygen from the Martian atmosphere, identifying other resources (such as subsurface water), improving landing techniques and characterizing weather, dust and other potential environmental conditions that could affect future astronauts living and working on Mars.

image

We’re also developing a first-ever robotic mission to visit a large near-Earth asteroid, collect a multi-ton boulder from its surface and redirect it into a stable orbit around the moon. Once it’s there, astronauts will explore it and return with samples in the 2020s. This Asteroid Redirect Mission (ARM) is part of our plan to advance new technologies and spaceflight experience needed for a human mission to the Martian system in the 2030s.

3. Building the Ride

Okay, so we’ve talked about how we’re preparing for a journey to Mars…but what about the ride? Our Space Launch System, or SLS, is an advanced launch vehicle that will help us explore beyond Earth’s orbit into deep space. SLS will be the world’s most powerful rocket and will launch astronauts in our Orion spacecraft on missions to an asteroid and eventually to Mars.

image

In the rocket's initial configuration it will be able to take 154,000 pounds of payload to space, which is equivalent to 12 fully grown elephants! It will be taller than the Statue of Liberty and it’s liftoff weight will be comparable to 8 fully-loaded 747 jets. At liftoff, it will have 8.8 million pounds of thrust, which is more than 31 times the total thrust of a 747 jet. One more fun fact for you…it will produce horsepower equivalent to 160,000 Corvette engines!

image

Sitting atop the SLS rocket will be our Orion spacecraft. Orion will be the safest most advanced spacecraft ever built, and will be flexible and capable enough to carry humans to a variety of destinations. Orion will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities.

4. Making it Sustainable

When humans get to Mars, where will they live? Where will they work? These are questions we’ve already thought about and are working toward solving. Six partners were recently selected to develop ground prototypes and/or conduct concept studies for deep space habitats.

image

These NextSTEP habitats will focus on creating prototypes of deep space habitats where humans can live and work independently for months or years at a time, without cargo supply deliveries from Earth.

image

Another way that we are studying habitats for space is on the space station. In June, the first human-rated expandable module deployed in space was used. The Bigelow Expandable Activity Module (BEAM) is a technology demonstration to investigate the potential challenges and benefits of expandable habitats for deep space exploration and commercial low-Earth orbit applications.

Our journey to Mars requires preparation and research in many areas. The powerful new Space Launch System rocket and the Orion spacecraft will travel into deep space, building on our decades of robotic Mars explorations, lessons learned on the International Space Station and groundbreaking new technologies.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Getting to Mars: A New Rocket for the Journey

Do you know what the structural backbone is of our new rocket, the Space Launch System? If you answered the core stage, give yourself a double thumbs up! Or better yet, have astronaut Scott Kelly do it!

image

We’re on a journey to Mars. For bolder missions to deep space, we need a big, powerful rocket like SLS to take astronauts in the Orion spacecraft to places we've never gone before. The core stage is a major part of that story, as it will house the fuel and avionics systems that will power and guide the rocket to those new destinations beyond Earth’s orbit. Here's how:

It's Big, and It's Fast.

The core stage will be the largest rocket stage ever built and is under construction right now at our Michoud Assembly Facility in New Orleans. It will stand at 212 feet tall and weigh more than 2.3 million pounds with propellant. That propellant is cryogenic liquid hydrogen and liquid oxygen that will feed the vehicle’s RS-25 engines. In just 8.5 minutes, the core stage will reach Mach 23, which is faster than 17,000 mph!

It's Smart.

image

Similar to a car, the rocket needs all the equipment necessary for the "drive" to deep space. The core stage will house the vehicle’s avionics, including flight computers, instrumentation, batteries, power handling, sensors and other electronics. That's a lot of brain power behind those orange-clad aluminum walls. *Fun fact: Orange is the color of the rocket's insulation.

It's a Five-Parter.

image

The core stage is made up of five parts. Starting from the bottom is the engine section, which will deliver the propellants to the four RS-25 engines. It also will house avionics to steer the engines, and be an attachment point for the two, five-segment solid rocket boosters. The engine section for the first SLS flight has completed welding and is in the final phases of manufacturing at Michoud.

image

Next up is the liquid hydrogen tank. It will hold 537,000 gallons of liquid hydrogen cooled to -423 degrees Fahrenheit. Right now, engineers are building the tank for the first SLS mission. It will look very similar to the qualification test article that just finished welding at Michoud. That's an impressive piece of rocket hardware!

image

The next part of the core stage is the intertank, which will join the propellant tanks. It has to be super strong because it is the attachment point for the boosters and absorbs most of the force when they fire 3.6 million pounds of thrust each. It's also a "think tank" of sorts, as it holds the SLS avionics and electronics. The intertank is even getting its own test structure at our Marshall Space Flight Center in Huntsville, Alabama.

image

And then there's the liquid oxygen tank. It will store 196,000 gallons of liquid oxygen cooled to -297 degrees. If you haven't done the math, that's 733,000 gallons of propellant for both tanks, which is enough to fill 63 large tanker trucks. Toot, toot. Beep, beep! A confidence version of the tank has finished welding at Michoud, and it's impressive. Just ask this guy.

image

The topper of the core stage is the forward skirt. Funny name, but serious hardware. It's home to the flight computers, cameras and avionics. The avionics system is being tested right now in a half-ring structure at the Marshall Center.

image

You can click here for more SLS core stage facts. We'll continue building, and see you at the launch pad for the first flight of SLS with Orion in 2018!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Getting to Mars: What It’ll Take

Join us as we take a closer look at the next steps in our journey to the Red Planet:

The journey to Mars crosses three thresholds, each with increasing challenges as humans move farther from Earth. We’re managing these challenges by developing and demonstrating capabilities in incremental steps:

Earth Reliant

image

Earth Reliant exploration is focused on research aboard the International Space Station. From this world-class microgravity laboratory, we are testing technologies and advancing human health and performance research that will enable deep space, long duration missions.

On the space station, we are advancing human health and behavioral research for Mars-class missions. We are pushing the state-of-the-art life support systems, printing 3-D parts and analyzing material handling techniques.

Proving Ground

image

In the Proving Ground, we will learn to conduct complex operations in a deep space environment that allows crews to return to Earth in a matter of days. Primarily operating in cislunar space (the volume of space around the moon). We will advance and validate the capabilities required for humans to live and work at distances much farther away from our home planet…such as at Mars.

Earth Independent

image

Earth Independent activities build on what we learn on the space station and in deep space to enable human missions to the Mars vicinity, possibly to low-Mars orbit or one of the Martian moons, and eventually the Martian surface. Future Mars missions will represent a collaborative effort between us and our partners.

image

Did you know….that through our robotic missions, we have already been on and around Mars for 40 years! Taking nearly every opportunity to send orbiters, landers and rovers with increasingly complex experiments and sensing systems. These orbiters and rovers have returned vital data about the Martian environment, helping us understand what challenges we may face and resources we may encounter.

image

Through the Asteroid Redirect Mission (ARM), we will demonstrate an advanced solar electric propulsion capability that will be a critical component of our journey to Mars. ARM will also provide an unprecedented opportunity for us to validate new spacewalk and sample handling techniques as astronauts investigate several tons of an asteroid boulder.

Living and working in space require accepting risks – and the journey to Mars is worth the risks. A new and powerful space transportation system is key to the journey, but we will also need to learn new ways of operating in space.

We Need You!

image

In the future, Mars will need all kinds of explorers, farmers, surveyors, teachers…but most of all YOU! As we overcome the challenges associated with traveling to deep space, we will still need the next generation of explorers to join us on this journey. Come with us on the journey to Mars as we explore with robots and send humans there one day.

Join us as we go behind-the-scenes:

We’re offering a behind-the-scenes look Thursday, Aug. 18 at our journey to Mars. Join us for the following events:

Journey to Mars Televised Event at 9:30 a.m. EDT Join in as we host a conversation about the numerous efforts enabling exploration of the Red Planet. Use #askNASA to ask your questions! Tune in HERE.

Facebook Live at 1:30 p.m. EDT Join in as we showcase the work and exhibits at our Michoud Assembly Facility. Participate HERE.

Hot Fire Test of an RS-25 Engine at 6 p.m. EDT The 7.5-minute test is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch. Watch HERE.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Solar System: Life Among the Stars

Let us lead you on a journey of our solar system. Here are some things to know this week:

1. Amateur" Means "One Who Loves"

image

We release thousands of breathtaking solar system images every year and not all of them are the exclusive result of work by scientists. Amateur image processors around the world take raw data from deep space missions and turn it into striking visuals.

Amateur images from Cassini

Get current unprocessed images 

2. Prepare to Weigh Anchor

image

OSIRIS-REx, our first spacecraft destined to rendezvous with, study and return a sample of an asteroid, will launch. The mission to asteroid Bennu will yield the largest sample returned from space since the Apollo era. Tune in four our media briefing about OSIRIS-REx for 2 p.m. EDT on Aug. 17.

Learn more and tune in.

3. Out for a Walk

image

Join us for live coverage on Aug. 19 as our astronauts Jeff Williams and Kate Rubins install a new gateway for American commercial crew spacecraft at the International Space Station.

Live coverage of the spacewalk.

4. The Weather Out There

image

Aug. 17 marks 50 years since the launch of Pioneer 7, a robotic spacecraft that lived up to its name by exploring the solar magnetic field, the solar wind and cosmic rays in deep space. Along with Pioneers 6, 8, and 9, the spacecraft formed a ring of solar weather stations spaced  along Earth's orbit. Measurements by the craft were used to predict solar storms for organizations ranging from commercial airlines to power companies.

Learn more.

5. Destination: The Red Planet

image

The European Space Agency's ExoMars/Trace Gas Orbiter mission to Mars performed a critical engine burn to keep it on course. The maneuver was a success, and ExoMars remains on target for an October arrival.

Learn more.

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

What’s Up for August 2016

What’s up for August? How to spot Mercury, Venus,  Mars, Jupiter and Saturn, as well as the and the annual Perseid meteor shower. 

image

Here are some highlights in this month’s nighttime skies as picked by astronomer Jane Houston Jones from our Jet Propulsion Laboratory.

image

Spot Venus, Mercury and Jupiter and the moon low on the western horizon about 45 minutes after sunset from August 4 through 7. On August 11, look in the south-southwest sky for a second planetary dance as Mars and Saturn are high and easy to see and they are joined by the moon.

image

The famous and reliably active Perseid meteor shower peaks in the morning hours of August 12. The moon, which paired up so nicely with Mars and Saturn on the 11, is bright enough to blot out some of the meteors, but lucky for you it sets about 1 a.m. on the morning of the 12, just at the peak time for the best Perseid viewing.

image

But wait, there are more planets, dwarf planets and an asteroid visible this month! Uranus and Neptune and dwarf planet Ceres are visible before dawn in the southern sky. Uranus is visible through binoculars but Neptune and Ceres require a telescope.

Watch the full August “What’s Up” video for more: 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

Solar System: Things to Know This Week

Special Edition: Viking 40th Anniversary

image

Mars is hard. Forty years ago this week, our Viking mission found a place in history when it became the first U.S. mission to land a spacecraft safely on the surface of Mars and return images of the surface. This is astonishing considering that many of the spacecraft destined for Mars failed before completing their missions and some failed before their observations could begin.

Here’s a few things to know about the Viking missions that ushered in a new era of Mars explorations 40 years ago:

1. Multi Mission

image

The Viking mission consisted of four spacecraft – two orbiters and two landers. All four made significant science discoveries.

2. Last Minute Switch

image

The spacecraft eventually named Viking 2 was supposed to launch first, but a battery problem prompted us to send the second spacecraft first. Batteries recharged, Viking 2 was then sent to rendezvous with the Red Planet.

3. Not Quite the First

image

Viking 1 was the first to send back science from the surface of Mars, but the honor of the first Mars landing goes to the Soviet Union’s Mars 3. The Soviet spacecraft landed on Mars in December 1970, but sent back only 20 seconds of video data before going silent.

4. Viking 1 Quick Stats

image

Viking 1 was launched Aug. 20 1975, and arrived at Mars on June 19, 1976. On July 20, 1976, the Viking 1 lander separated from the orbiter and touched down at Chryse Planitia.

5. Viking 2 Quick Stats

image

Viking 2 was launched Sept. 9, 1975, and entered Mars orbit Aug. 7, 1976. The Viking 2 lander touched down at Utopia Planitia on Sept. 3, 1976.

image

For more information about the Viking missions, and to celebrate the 40th anniversary, check out our list of events HERE.

Discover the full list of 10 things to know about our solar system this week HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Solar System: Things to Know This Week

Our solar system is huge, let us break it down for you. Here are a few things to know this week:

1. Up at Jupiter, It’s Down to Business

Solar System: Things To Know This Week

Ever since our Juno mission entered Jupiter's orbit on July 4, engineers and scientists have been busy getting their newly arrived spacecraft ready for operations. Juno's science instruments had been turned off in the days leading up to Jupiter orbit insertion. As planned, the spacecraft powered up five instruments on July 6, and the remaining instruments should follow before the end of the month. The Juno team has also scheduled a short trajectory correction maneuver on July 13 to refine the orbit.

2. The Shadows Know

Solar System: Things To Know This Week

Scientists with our Dawn mission have identified permanently shadowed regions on the dwarf planet Ceres. Most of these areas likely have been cold enough to trap water ice for a billion years, suggesting that ice deposits could exist there now (as they do on the planet Mercury). Dawn is looking into it.

3. Frosts of Summer

Solar System: Things To Know This Week

Some dusty parts of Mars get as cold at night year-round as the planet's poles do in winter, even in regions near the equator in summer, according to new findings based on Mars Reconnaissance Orbiter observations. The culprit may be Mars' ever-present dust.

4. Can You Hear Me Now?

Solar System: Things To Know This Week

The OSIRIS-REx spacecraft is designed to sample an asteroid and return that sample to Earth. After launch in Sept., the mission's success will depend greatly on its communications systems with Earth to relay everything from its health and status to scientific findings from the asteroid Bennu. That's why engineers from our Deep Space Network recently spent a couple of weeks performing detailed tests of the various communications systems aboard OSIRIS-REx.

5. Cometary Close-ups

Solar System: Things To Know This Week

The Rosetta spacecraft has taken thousands of photographs of Comet 67/P. The European Space Agency (ESA) is now regularly releasing the highest-resolution images. The word "stunning" is used a lot when referring to pictures from space—and these ones truly are. See the latest HERE.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Four Cool Facts About Our New Rocket’s Booster Test Firing

The countdown to our last full-scale test firing of NASA’s Space Launch System (SLS) solid rocket boosters has begun (mark your calendars: June 28, 8:05 a.m. MDT [local time] 10:05 a.m. EDT). SLS is NASA’s new rocket that can go to deep space destinations, and this test is one more step on our Journey to Mars. This test will be broadcast live on NASA TV and our Facebook page. For those watching at home or work, here are four cool things that might not be so obvious on the screen.

1. So Hot, It Turns Sand Into Glass

image

With expanding gases and flames exiting the nozzle at speeds in excess of Mach 3 and temperatures reaching 3,700 degrees Fahrenheit, say goodbye to some of the sand at Orbital ATK’s test facility in the Utah desert because after the test, the sand at the aft, or rear, end of the booster motor will be glass.

2. This Motor’s Chill

Four Cool Facts About Our New Rocket’s Booster Test Firing

This motor has been chilling — literally, down to 40 degrees — since the first week in May in Orbital ATK’s “booster house,” a special building on rails that moves to enclose the booster and rolls back so the motor can be test-fired. Even though SLS will launch from the normally balmy Kennedy Space Center in Florida, temperatures can vary there and engineers need to be sure the booster will perform as expected whether the propellant inside the motor is 40 degrees or 90 degrees (the temperature of the propellant during the first full-scale test, Qualification Motor 1 or QM-1).

3. This Booster’s on Lockdown

image

If you happen to be near Promontory, Utah, on June 28, you can view the test for yourself in the public viewing area off State Route 83. And don’t worry, this booster’s not going anywhere — engineers have it locked down. The motor is held securely in place by Orbital ATK’s T-97 test stand.  During the test, the motor will push against a forward thrust block with more than three million pounds of force. Holding down the rocket motor is more than 13 million pounds of concrete — most of which is underground. The test stand contains a system of load cells that enable engineers to measure the thrust the motor produces and verify their predictions.

4. Next Time, It’s For Real

image

These solid rocket boosters are the largest and most powerful ever built for flight. They’ve been tested and retested in both full-scale and smaller subsystem-level tests, and vital parts like the nozzle, insulation and avionics control systems have been upgraded and revamped. Most of this work was necessary because, plainly put, SLS needs bigger boosters. Bigger boosters mean bolder missions – like around the moon during the first integrated mission of SLS and Orion. So the next time we see these solid rocket motors fire, they will be propelling SLS off the launch pad at Kennedy Space Center and on its first flight with NASA’s Orion spacecraft. For real.


Tags
8 years ago

Solar System: Things to Know This Week

Our solar system is huge, so let us break it down for you. Here are a few things to know this week:

1. We’re Going In

image

To be honest, Jupiter is kind of a monster. Not only is it the biggest planet in the solar system, but it also wields the most dangerous radiation and other powerful forces. Despite the risks, our Juno probe is going in close, because Jupiter also holds precious clues to how the planets formed, including our own. Arrival date: July 4. Watch the Juno mission trailer video HERE.

2. Moon Maps

image

The moon is beautiful in the sky, and also up close—sometimes even in the maps that scientists use to study its surface. Here are some evocative maps that lunar geologists have drawn up to chart the landscapes in the moon’s dramatic Tycho Crater. Take a look HERE.

3. That’s No Moon…Sort Of

image

The full moon we’ll see this week is not Earth’s only companion in space. Astronomers have discovered a small asteroid in an orbit around the sun that keeps it near the Earth, where it will remain for centuries. But it’s not exactly a second moon, either.

4. Power Blast

image

Venus has an “electric wind” strong enough to remove the components of water from its upper atmosphere, which may have played a significant role in stripping Earth’s twin planet of its oceans, according to new results from the European Space Agency (ESA) Venus Express mission by NASA-funded researchers.

5. How Green (Well, Red) Was My Valley

image

“Marathon Valley” slices through the rim of a large crater on Mars. It has provided fruitful research targets for our Opportunity rover since July 2015, but now the rover’s team is preparing to move on.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Solar System: Things to Know This Week

Our solar system is huge, let us break it down for you. Here are a few things to know this week:

1. The View from the Far Shore

Solar System: Things To Know This Week

The rugged shores of Pluto’s highlands come into sharp view in a newly released image from our New Horizons spacecraft. This latest view zooms in on the southeastern portion of Pluto’s great ice plains, where they border dark highlands formerly named Krun Macula.

2. Dawn’s Latest Light

Solar System: Things To Know This Week

Our Dawn mission has now completed more than 1,000 orbital revolutions since entering into Ceres’ gravitational grip in March 2015. The probe is healthy and performing its ambitious assignments impeccably. See what it has revealed lately HERE.

3. Counting Down

Solar System: Things To Know This Week

Our OSIRIS-REx mission to the asteroid Bennu is now entering the final preparations for its planned launch in September. In a new interview, the mission’s principal investigator reports on the final pre-flight tests happening at our Kennedy Space Center in Florida.

4. Deep Dive

Solar System: Things To Know This Week

Three successful engine maneuvers to bring the lowest part of the spacecraft’s orbit down to just 74 miles (119 km) above the surface of Mars, the MAVEN mission’s fifth deep dip campaign has begun. MAVEN is studying the planet’s atmosphere up close.

5. Storm Season

Solar System: Things To Know This Week

Meanwhile, other robotic Mars orbiters have revealed that a pattern of three large regional dust storms occurs with similar timing most Martian years. The seasonal pattern was detected from dust storms’ effects on atmospheric temperatures, which spacecraft have been monitoring since 1997.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

What’s Up for June 2016?

What’s Up For June 2016?

What's Up for June? Saturn at its best! Plus, good views of Mars, Jupiter and Jupiter's moons continue from dusk to dawn.

What’s Up For June 2016?

You don't have to stay up late to see Jupiter, Mars and Saturn this month, because they're all visible soon after sunset. Jupiter is the brightest of the three, visible in the western sky all evening. 

What’s Up For June 2016?

The four Galilean moons are easily visible in binoculars or telescopes. If you think you're seeing 5 moons on June 10th, you're not. One of them is a distant star in the constellation Leo.

What’s Up For June 2016?

For telescope viewers, the time near Mars' closest approach to Earth, May 30th this year, is the best time to try to see the two moons of Mars: Phobos and Deimos. It takes patience, very steady skies and good charts! Mars is still large and bright in early June, but it fades as speedy Earth, in its shorter orbit around the sun, passes it.

What’s Up For June 2016?

Saturn has been close to Mars recently. This month Saturn reaches opposition, when Saturn, Earth and the sun are in a straight line with Earth in the middle, providing the best and closest views of the ringed beauty and several of its moons. You'll be able to make out cloud bands on Saturn, in delicate shades of cream and butterscotch. They're fainter than the bands of Jupiter. Through a telescope you'll see Saturn's rings tilted about as wide as they get: 26 degrees.

What’s Up For June 2016?

You'll also have a ring-side view of the Cassini division, discovered by Giovanni Domenico Cassini, namesake of our Cassini spacecraft, orbiting Saturn since 2004 and continuing through September 2017. When you look at Saturn through a telescope, you can't help but see several of its 4 brightest moons, and maybe more. If you just see one, that's Titan, 50% larger than our own moon. A telescope can also reveal more moons, like Saturn's two-colored moon Iapetus. It takes 3 months to orbit Saturn, and it's fairly easy to see.

What’s Up For June 2016?

There's a bright comet visible this month, Comet PanSTARRS. It's best seen from the southern hemisphere, but it's also visible from the U.S. low in the morning sky. Comet PanSTARRS can be seen through a telescope near the beautiful Helix Nebula on June 4, but it is visible all month.

What’s Up For June 2016?

Watch the full June “What’s Up” video for more: https://youtu.be/M7RtIa9zBYA

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Solar System: Things to Know this Week

On May 22 Mars will be at opposition. That's when Mars, Earth and the sun all line up, with Earth directly in the middle. A few days later, Mars and Earth will reach the points in their orbits around the sun where they are nearest to each other. The closer Mars comes to Earth in its orbit, the larger and brighter it appears in the sky.

Solar System: Things To Know This Week

It's an opportunity for backyard skywatchers—and a good time to catch up on all the exploration now underway at the Red Planet. Here are a few things to know this week about Mars:

1. Red Star Rising

Solar System: Things To Know This Week

The best time to see Mars at its brightest is when it's highest in the sky, which is around midnight during May. Look toward the south in the constellation Scorpius (where right now you can also catch the planet Saturn). If you have a telescope, you may be able to pick out some of the features on its surface. But don't fall for Internet rumors claiming that Mars will appear as big as the full moon. Instead, it will look like a bright, reddish or orange star. Get Mars viewing tips HERE.

2. Roving Weather Reporter

Solar System: Things To Know This Week

Our Mars Curiosity mission has now been roving across the floor of Gale Crater for two full Martian years—that's four Earth years. This robotic geologist is a meteorologist, too, and its long journey has allowed it to observe the local weather for two full seasonal cycles. During that time, the rover's instruments have recorded temperatures ranging from 60.5 degrees Fahrenheit (15.9 degrees Celsius) on a summer afternoon, to minus 148 F (minus 100 C) on a winter night. They also detected an intriguing spike in methane gas—but it hasn't happened since.

3. Increasing Clouds, with a Chance of Dust Storms

Solar System: Things To Know This Week

The Mars Reconnaissance Orbiter keeps an eye on Martian weather, too, but on a global scale. Every week, you can see the latest weather report, including an animation showing storms and clouds across the face of Mars.

4. Walking the Ancient Shoreline

Solar System: Things To Know This Week

Mars explorers have studied evidence for years that the early history of the planet included times where liquid water flowed and pooled freely. But just how deep those ancient lakes were, and how long they lasted, remains a topic of debate. A new study offers a more detailed picture of the rise and fall of standing bodies of water.

5. Wish Upon a Star

Solar System: Things To Know This Week

It's true that Mars will be especially bright in the sky this week. But did you ever consider that Earth often shines for Mars as well? This image from the Curiosity rover shows our whole world as a single point of light. When people finally do stand on Mars, they'll be able to look at the twilight sky—and see home. Left: the Earth and the Moon in the evening sky of Mars, as seen by the Curiosity rover. Right: Mars rising over Salt Lake City. Mars credit: NASA/JPL-Caltech/MSSS/TAMU. Earth credit: Bill Dunford.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Solar System: Things to Know This Week

In addition to the Mercury transit of the sun today, there are a few other things you should know about our solar system this week:

1. Mars, Ready for its Close-Up

image

Mars will soon be closer to Earth than it has been for 11 years, presenting a great opportunity for backyard sky watchers.

2. Fire and Ice

image

Our spacecraft have an even closer view of Mars, and that fact regularly leads to some intriguing discoveries. The latest: volcanoes may have erupted beneath an ice sheet there billions of years ago. The above image is a mineral map of part of the Martian surface.

3. Icy Hydra

image

Meanwhile, our New Horizons spacecraft has sent home the first compositional data about Pluto's four small moons. The new data show the surface of Hydra is dominated by nearly pristine water ice--confirming hints that scientists picked up in images showing Hydra's highly reflective surface.

4. Ceres, Ever Sharper

image

The mission director for our Dawn mission writes, "Ceres, which only last year was hardly more than a fuzzy blob against the stars, is now a richly detailed world, and our portrait grows more elaborate every day."

5. Join us at Jupiter

image

Our Juno mission arrives at the giant planet on Jul. 4. Meanwhile, all amateur astronomers are invited to take part in a worldwide effort to identify potential observations for the spacecraft to make once it's in orbit. Find out how to join HERE.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

What’s Up for May 2016?

What’s Up For May 2016?

What's Up for May? Two huge solar system highlights: Mercury transits the sun and Mars is closer to Earth than it has been in 11 years.

What’s Up For May 2016?

On May 9, wake up early on the west coast or step out for coffee on the east coast to see our smallest planet cross the face of the sun. The transit will also be visible from most of South America, western Africa and western Europe.

What’s Up For May 2016?

A transit occurs when one astronomical body appears to move across the face of another as seen from Earth or from a spacecraft. But be safe! You'll need to view the sun and Mercury through a solar filter when looking through a telescope or when projecting the image of the solar disk onto a safe surface. Look a little south of the sun's Equator. It will take about 7 1/2 hours for the tiny planet's disk to cross the sun completely. Since Mercury is so tiny it will appear as a very small round speck, whether it's seen through a telescope or projected through a solar filter. The next Mercury transit will be Nov. 11, 2019.

What’s Up For May 2016?

Two other May highlights involve Mars. On May 22 Mars opposition occurs. That's when Mars, Earth and the sun all line up, with Earth directly in the middle.

What’s Up For May 2016?

Eight days later on May 30, Mars and Earth are nearest to each other in their orbits around the sun. Mars is over half a million miles closer to Earth at closest approach than at opposition. But you won't see much change in the diameter and brightness between these two dates. As Mars comes closer to Earth in its orbit, it appears larger and larger and brighter and brighter. 

What’s Up For May 2016?

During this time Mars rises after the sun sets. The best time to see Mars at its brightest is when it is highest in the sky, around midnight in May and a little earlier in June. 

What’s Up For May 2016?

Through a telescope you can make out some of the dark features on the planet, some of the lighter features and sometimes polar ice and dust storm-obscured areas showing very little detail.

What’s Up For May 2016?

After close approach, Earth sweeps past Mars quickly. So the planet appears large and bright for only a couple weeks. 

What’s Up For May 2016?

But don't worry if you miss 2016's close approach. 2018's will be even better, as Mars' close approach will be, well, even closer.

You can find out about our #JourneytoMars missions at mars.nasa.gov, and you can learn about all of our missions at http://www.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Solar System: Things to Know This Week

Here are a few things you should know about our solar system this week:

1. The Bright and the Beautiful

image

In its lowest-altitude mapping orbit, at a distance of 240 miles (385 kilometers) from Ceres, Dawn has provided scientists with spectacular views of the dwarf planet, especially of its bright, young, hexagonal craters like Haulani.

2. Mars Needs Brains

image

NASA is soliciting ideas from U.S. industry for designs of a Mars orbiter for potential launch in the 2020s. The satellite would provide advanced communications and imaging, as well as robotic science exploration, in support of NASA's Journey to Mars. This effort seeks to take advantage of industry capabilities to improve deep space, solar electric propulsion-enabled orbiters.

3. Seeing Double

image

NASA measured a solar flare from two different spots in space, using three solar observatories. During a December 2013 solar flare, three sun-observing spacecraft captured the most comprehensive observations ever of an electromagnetic phenomenon called a current sheet.

4. Set a Course for Europa

image

This artist's rendering shows NASA's Europa mission spacecraft, which is being developed for a launch in the 2020s. The mission would place a spacecraft in orbit around Jupiter in order to perform a detailed investigation of the giant planet's moon Europa—a world that shows strong evidence for an ocean of liquid water beneath its icy crust and which could host conditions favorable for life.

5. Go Deep

image

Jupiter is huge, powerful and spectacular. But what lies hidden inside the giant planet? The Juno mission arrives at Jupiter in July to help us find out. Join Dr. Fran Bagenal to learn more about the mission and how it plans to delve deep into Jupiter's secrets this year.

Want to learn more? Read our full list of things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Solar System: Things to Know This Week

The solar system is vast, and exploring it requires not one expedition, but many. From the sun to the Earth to the depths of space beyond Pluto, an entire fleet of spacecraft is pushing back the frontiers of knowledge. Scientists and engineers around the world work together on dozens of missions, and the results of their work unfold on a daily basis. During any given week, astronauts and robotic spacecraft return thousands of pictures and other data from Earth orbit and from half a dozen other worlds.

The result? It’s nothing short of a visual and intellectual feast. For example, all of the following images were obtained over the course of one week during January this year.

The same missions that took these pictures are still at work – they may be photographing Saturn or transmitting a report from Mars as you read this.

1. The Sun

Solar System: Things To Know This Week

From its clear vantage point in Earth orbit, our Solar Dynamics Observatory (SDO) observes our nearby star almost continuously. This image shows activity on the sun’s surface on Jan. 18. You can also get similar pictures from SDO daily!

2. The Earth from Afar

Solar System: Things To Know This Week

The DSCOVR satellite orbits the Earth at a distance of nearly a million miles (1.5 million kilometers). It’s Earth Polychromatic Imaging Camera (EPIC) keeps a steady watch on the home planet. This is how the world turned on Jan. 20. Get the latest daily images from EPIC HERE.

3. Mars from Above

Solar System: Things To Know This Week

The team that manages the Mars Reconnaissance Orbiter (MRO) recently celebrated a decade of observing the Red Planet. MRO took this detailed look at dunes and rocky buttes in Danielson Crater on Jan. 24. It was 3:06 p.m., local Mars time. On the right stide of the image, dust devils have left tracks in the sand.

4. Comet 67/P

Solar System: Things To Know This Week

The European Space Agency’s Rosetta probe caught this look at the surface of Comet 67/P from a distance of just 46 miles (75 kilometers) on Jan. 23.

5. Saturn

Solar System: Things To Know This Week

On the same day (Jan. 23), our Cassini spacecraft continued its odyssey of nearly two decades in space, bringing us this look at the sixth planet. See the latest images from Cassini HERE.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Fun Facts About Mars

image

Mars is a cold desert world, and is the fourth planet from the sun. It is half the diameter of Earth and has the same amount of dry land. Like Earth, Mars has seasons, polar ice caps, volcanoes, canyons and weather, but its atmosphere is too thin for liquid water to exist for long on the surface. There are signs of ancient floods on the Red Planet, but evidence for water now exists mainly in icy soil and thin clouds.

image

Earth has one, Mars has two…moons of course! Phobos (fear) and Deimos (panic) are the Red Planet’s two small moons. They are named after the horses that pulled the chariot of the Greek war god Ares, the counterpart to the Roman war god Mars.

image

The diameter of Mars is 4220 miles (6792 km). That means that the Red Planet is twice as big as the moon, but the Earth is twice as big as Mars.

image

Since Mars has less gravity than Earth, you would weigh 62% less than you do here on our home planet. Weigh yourself here on the Planets App. What’s the heaviest thing you’ve ever lifted? On Mars, you could have lifted more than twice that! Every 10 pounds on Earth only equals 4 pounds on the Red Planet. Find out why HERE.

image

Mass is the measurement of the amount of matter something contains. Mars is about 1/10th of the mass of Earth.

image

Mars and Earth are at their closest point to each other about every two years, with a distance of about 33 million miles between them at that time. The farthest that the Earth and Mars can be apart is: 249 million miles. This is due to the fact that both Mars and Earth have elliptical orbits and Mars’ orbit is tilted in comparison with the Earth’s. They also orbit the sun at different rates.

image

The temperature on Mars can be as high as 70 degrees Fahrenheit (20 degrees Celsius) or as low as about –225 degrees Fahrenheit (-153 degrees Celsius). How hot or cold the surface varies between day and night and among seasons. Mars is colder than Earth because it is farther from the sun.

image

You know that onions have layers, but did you know that Mars has layers too? Like Earth, Mars has a crust, a mantle and a core. The same stuff even makes up the planet layers: iron and silicate.

image

Ever wonder why it’s so hard launching things to space? It’s because the Earth has a log of gravity! Gravity makes things have weight, and the greater the gravity, the more it weights. On Mars, things weigh less because the gravity isn’t as strong.

image

Take a deep breath. What do you think you just breathed in? Mostly Nitrogen, about a fifth of that breath was Oxygen and the rest was a mix of other gases. To get the same amount of oxygen from one Earth breath, you’d have to take around 14,500 breaths on Mars! With the atmosphere being 100 times less dense, and being mostly carbon dioxide, there’s not a whole lot of oxygen to breathe in.

image

Mars has about 15% of Earth’s volume. To fill Earth’s volume, it would take over 6 Mars’ volumes.

For more fun Mars facts, visit HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Solar System: 10 Things to Know This Week

Real-life space travel across the solar system’s vast expanse is not for the impatient – it can take many years to reach a destination. The positive side is that our hardy robots are well engineered to take the abuse that the harsh space environment dishes out. This means they can return good science over the course of many years, sometimes for decades.

This week, we take a look at a few of our longest-lived planetary missions. All of them have been returning deep space dispatches to Earth for more than five years. Combined, their flight time adds up to more than a century and a half. The legacy of their exploration is likely to endure even longer.

1. Lunar Reconnaissance Orbiter (LRO) - Launched June 18, 2009

Solar System: 10 Things To Know This Week

LRO captures crystal-clear views of the lunar landscape on almost a daily basis – and has been doing it for years. Thanks to LRO, we’ve nearly mapped the entire surface now at very high resolution. Learn more about LRO HERE.

2. Dawn – Launched Sept. 27, 2007

Solar System: 10 Things To Know This Week

The Dawn mission has been exploring the dwarf planet Ceres for just over a year now — but the Dawn spacecraft’s journey began long before that. After a trek from Earth to the asteroid belt, it made a stop at the giant asteroid Vesta before moving on to Ceres.

3. New Horizons – Launched Jan. 19, 2006

Solar System: 10 Things To Know This Week

With its ongoing discoveries based on the July 2015 Pluto flyby, the New Horizons mission is in the news all the time. It’s easy to forget the mission is not new — the spacecraft has been traversing the dark of space for more than a decade. New Horizons is now more than 3 billion miles (5 billion km) from Earth as it delves deeper into the outer solar system.

4. Mars Reconnaissance Orbiter (MRO) – Launched Aug. 12, 2005

Solar System: 10 Things To Know This Week

MRO recently marked a decade of returning spectacular images from Mars, in many more colors than just red. Peruse 10 years of MRO discoveries at Mars HERE.

5. Cassini – Launched Oct. 15, 1997

Solar System: 10 Things To Know This Week

As it circles through the Saturn system, the Cassini spacecraft is currently about 975 million miles (1.57 billion km) from Earth, but its total odometer reads much more than that. This long, spectacular mission is slated to end next year. In the meantime, it’s about to enter the “Grande Finale” stage.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Solar System: 5 Things to Know This Week

From Mars to the asteroid belt to Saturn, our hardworking space robots are exploring the solar system. These mechanical emissaries orbit distant worlds or rove across alien landscapes, going places that are too remote or too dangerous for people (for now).

We often show off the pictures that these spacecraft send home, but this week we’re turning that around: here are some of the best pictures of the space robots, taken by other robots (or themselves), in deep space.

1. So Selfless with the Selfies

image

The Mars Curiosity rover makes breathtaking panoramas of the Martian landscape — and looks good doing it. This mission is famous for the remarkable self portraits of its robotic geologist in action. See more Martian selfies HERE. You can also try this draggable 360 panorama HERE. Find out how the rover team makes these images HERE.

2. Two Spaceships Passing in the Moonlight

image

In a feat of timing on Jan. 14, 2014, our Lunar Reconnaissance Orbiter caught a snapshot of LADEE, another robotic spacecraft that was orbiting the moon at the time. LADEE zoomed past at a distance of only about five miles below.

3. Bon Voyage, Galileo

image

The history-making Galileo mission to Jupiter set sail from the cargo bay of another spacecraft, Space Shuttle Atlantis, on Oct. 18, 1989. Get ready for Juno, which is the next spacecraft to arrive at Jupiter in July.

4. Cometary Close-Up

image

Using a camera on the Philae lander, the Rosetta spacecraft snapped an extraordinary self portrait at comet 67P/Churyumov-Gerasimenko from a distance of about 10 miles. The image captures the side of Rosetta and one of its 14-meter-long solar wings, with the comet in the background. Learn more about Rosetta HERE.

5. Man and Machine

image

This snapshot captures a remarkable moment in the history of exploration: the one and only time a human met up in space with a robotic forerunner on location. The Surveyor 3 lander helped pave the way for the astronaut footsteps that came a few years later. See the story of Apollo 12 and this unique encounter HERE.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Travel Posters of Fantastic Excursions

What would the future look like if people were regularly visiting to other planets and moons? These travel posters give a glimpse into that imaginative future. Take a look and choose your destination:

The Grand Tour

image

Our Voyager mission took advantage of a once-every-175-year alignment of the outer planets for a grand tour of the solar system. The twin spacecraft revealed details about Jupiter, Saturn, Uranus and Neptune – using each planet’s gravity to send them on to the next destination.

Mars

image

Our Mars Exploration Program seeks to understand whether Mars was, is, or can be a habitable world. This poster imagines a future day when we have achieved our vision of human exploration of the Red Planet and takes a nostalgic look back at the great imagined milestones of Mars exploration that will someday be celebrated as “historic sites.”

Earth

image

There’s no place like home. Warm, wet and with an atmosphere that’s just right, Earth is the only place we know of with life – and lots of it. Our Earth science missions monitor our home planet and how it’s changing so it can continue to provide a safe haven as we reach deeper into the cosmos.

Venus

image

The rare science opportunity of planetary transits has long inspired bold voyages to exotic vantage points – journeys such as James Cook’s trek to the South Pacific to watch Venus and Mercury cross the face of the sun in 1769. Spacecraft now allow us the luxury to study these cosmic crossings at times of our choosing from unique locales across our solar system.

Ceres

image

Ceres is the closest dwarf planet to the sun. It is the largest object in the main asteroid belt between Mars and Jupiter, with an equatorial diameter of about 965 kilometers. After being studied with telescopes for more than two centuries, Ceres became the first dwarf planet to be explored by a spacecraft, when our Dawn probe arrived in orbit in March 2015. Dawn’s ongoing detailed observations are revealing intriguing insights into the nature of this mysterious world of ice and rock.

Jupiter

image

The Jovian cloudscape boasts the most spectacular light show in the solar system, with northern and southern lights to dazzle even the most jaded space traveler. Jupiter’s auroras are hundreds of times more powerful than Earth’s, and they form a glowing ring around each pole that’s bigger than our home planet. 

Enceladus

image

The discovery of Enceladus’ icy jets and their role in creating Saturn’s E-ring is one of the top findings of the Cassini mission to Saturn. Further Cassini discoveries revealed strong evidence of a global ocean and the first signs of potential hydrothermal activity beyond Earth – making this tiny Saturnian moon one of the leading locations in the search for possible life beyond Earth.

Titan

image

Frigid and alien, yet similar to our own planet billions of years ago, Saturn’s largest moon, Titan has a thick atmosphere, organic-rich chemistry and surface shaped by rivers and lakes of liquid ethane and methane. Our Cassini orbiter was designed to peer through Titan’s perpetual haze and unravel the mysteries of this planet-like moon.

Europa

image

Astonishing geology and the potential to host the conditions for simple life making Jupiter’s moon Europa a fascinating destination for future exploration. Beneath its icy surface, Europa is believed to conceal a global ocean of salty liquid water twice the volume of Earth’s oceans. Tugging and flexing from Jupiter’s gravity generates enough heat to keep the ocean from freezing.

You can download free poster size images of these thumbnails here: http://www.jpl.nasa.gov/visions-of-the-future/

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Solar System: 5 Things To Know This Week

Solar System: 5 Things To Know This Week

This month you can catch a rare sight in the pre-dawn sky: five planets at once! If you look to the south (or to the north if you’re in the southern hemisphere) between about 5:30 and 6 a.m. local time you’ll see Mercury, Venus, Saturn, Mars and Jupiter lined up like jewels on a necklace. They’re beautiful in the sky, and even more fascinating when you look closely.

This week we’re taking a tour of the planets with recent information about each:

1. Artistic License

Solar System: 5 Things To Know This Week

Craters on Mercury are named for writers and artists of all kinds. There are Tolstoy, Thoreau and Tolkien craters, for example, as well as those that bear the names of the Brontës, photographer Dorothea Lange and dancer Margot Fonteyn. See the complete roster of crater names HERE.

2. Lifting the Veil of Venus

Solar System: 5 Things To Know This Week

A thick covering of clouds made Venus a mystery for most of human history. In recent decades, though, a fleet of robotic spacecraft has helped us peer past the veil and learn more about this world that is so like the Earth in some ways — and in some ways it’s near opposite.

3. Curious?

Solar System: 5 Things To Know This Week

Have you ever wanted to drive the Mars Curiosity rover? You can take the controls using our Experience Curiosity simulation. Command a virtual rover as you explore the terrain in Gale Crater, all using real data and images from Mars. Try it out HERE.

4. Now That’s a Super Storm

Solar System: 5 Things To Know This Week

Winter weather often makes headlines on Earth — but on Jupiter there’s a storm large enough to swallow our entire planet several times over. It’s been raging for at least three hundred years! Learn about the Great Red Spot HERE.

5. Ring Watcher

Solar System: 5 Things To Know This Week

This week, the Cassini spacecraft will be making high-resolution observations of Saturn’s entrancing rings. This is a simulated look at Saturn, along with actual photos of the rings from the Cassini mission.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Space Gardening 101

You can’t escape eating (or gardening!) your vegetables, even if you’re in space. On Aug. 10, astronauts on the International Space Station sampled their first space grown salad. This freshly harvest red romaine lettuce was grown in the “Veggie” plant growth chamber that is designed to make gardens flourish in weightlessness.

image

In a weightless environment, there is no up and down, so roots grow in all directions. Water and soil, the materials used to anchor these plants and allow for root growth tend to float away.

How Do We Grow Plants in Space? 

1. Plant Pillows

image

The Veggie chamber helps solve the problems of a weightless environment by using ‘plant pillows’, sounds comfy right? These pillows are bags filled with material for growing plants in space. 

2. Wicks

image

Wicks are implanted into the bags and are used to draw water from inside the pillow to the plant.

image

These wicks also provide a place to glue the seeds. It’s important to orient the seeds so roots will grow ‘down’, and shoots that emerge will push out of the bag.

3. LED Lights

image

LED lights are used for photosynthesis and give the shoots a sense of direction so they keep growing upward. The walls of the Veggie chamber can expand to make room for the plant as it grows.

The purple/pinkish hue surrounding the plants in Veggie is the result of a combination of the red and blue lights, which is what the plants need to grow. Green LEDS were added so the plants look like edible food rather than weird purple plants.

Why are we growing plants in space?

When astronauts travel on deep space missions, like Mars, they will need to be self-sufficient for long periods of time. Having the ability to grow their own food is a big step in that direction. There is also a desire to grow flowering vegetables in space, which is why we are currently tending to zinnia flowers on orbit. Growing these flowering plants will help us understand longer duration growing plants that have to flower in space, such as tomatoes.

image

What’s Next? The next SpaceX delivery will include seeds for a small cabbage and additional red romaine lettuce. Upcoming experiments will use various ratios of red and blue lights and different fertilizers in attempts to improve crop yield, nutrition and flavor. The findings from these experiments can be utilized both on Earth and in space.

image

In addition to the nutrition benefits of growing vegetables in space, the psychological benefits are also significant. Having living plants can help with stress and increase the crews’ enjoyment. It provides the sights, smells and tastes of Earth.

To learn more about gardening in space, watch ScienceCast HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago
Do Not Go Where The Path May Lead, Go Instead Where There Is No Path And Leave A Trail.  —Ralph Waldo

Do not go where the path may lead, go instead where there is no path and leave a trail.  —Ralph Waldo Emerson 


Tags
9 years ago

What’s Up for December?

image

View Mars right now, and prepare for 2016, the best Mars viewing year since 2005! Last month early risers watched small, reddish Mars dance with brighter Jupiter and Venus just before sunrise. 

image

This month Mars rises earlier-by about 2 a.m. local time. Its reddish color is unmistakable, even without a telescope. It's easy to see below the Moon and Jupiter on December 4. You won't see many features this month, because the planet is almost 10 times smaller than nearby Jupiter appears and 350 times smaller than the Moon appears to us on Earth.

image

You should also be able to see Mars' north polar region this month, because it's currently tilted towards Earth. 

image

You'll be amazed at the changes you'll see during 2016. January through December are all prime Mars observing months. Between January and May next year, Mars triples in apparent diameter as its orbit around the sun brings it closer to Earth. You'll even be able to see the areas on Mars where NASA's Mars landers are located.

image

By October, Mars shrinks in apparent size to less than half its May diameter as it speeds away from Earth. Mars shrinks even further from October through December, returning to the same size we saw in January 2016 by year's end.

So put Mars viewing on your calendar for 2016. You won't see Mars this size again until 2018, when Mars will put on an even better show.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

How Well Do You Know Your Space Photos?

Can you guess the subject of each of these pictures? How many will you get right? Test your friends and family to see who knows their space photos the best.

1. Ice on Earth or a Picture of Mars?

image

2. Dry Land on Earth or a Close-Up of Jupiter?

image

3. Mercury or Our Moon?

image

4. Do You Think This is Mars or Our Home Planet?

image

5. Waves on Jupiter or Saturn?

image

6. Is this a picture of Mars or Earth?

image

7. Can You Tell Which is Europa and Which is the Bottom of a Frying Pan?

image

8. Close-Up of Our Moon or Dwarf Planet Ceres?

image

9. A Weird World or Our Own World?

image

10. The Red Planet or a Red Desert?

image

Answers

1. Mars. You might be surprised, but this image taken by our Mars Reconnaissance Orbiter is of a light-toned deposit on the Martian surface. Some shapes in the terrain suggest erosion by a fluid moving north to south.

2. Earth. This image taken by our Earth Observing-1 satellite shows Lake Frome in central Australia. In this image, the salt lake appears bone-dry, filled with off-white sediment. This area of Australia receives 149 to 216 millimeters of rainfall a year on average, and the basins pass most of their time as saltpans.

3. Mercury. Our MESSENGER spacecraft captured this image of Mercury during a fly by in October 2008. It shows previously uncharted regions of the planet that have large craters with an internal smoothness similar to Earth’s own moon. It is thought that these craters were to have been flooded by lava flows that are old but not as old as the surrounding more highly cratered surface.

4. Earth. Surprisingly, this image take from the International Space Station shows the western half of the Arabian peninsula in Saudi Arabia. It not only contains large expanses of sand and gravel, but extensive lava fields known as haraat.

5. Saturn. Although this pattern of waves is similar to those seen on Jupiter, this is actually a picture of Saturn. The pattern of an iconic surfer’s wave, has been observed in many places all over the universe, including at the edges of Earth’s magnetic environment.

6. Mars. This image was taken by our Mars Reconnaissance Orbiter and shows dunes of sand-sized materials that have been trapped on the floors of many Martian craters. The dunes are linear, thought to be due to shifting wind directions.

7. Left: Europa. Right: Frying Pan. Europa is one of Jupiter’s moons, and is about the same size as Earth’s moon.

8. Ceres. This image taken by our Dawn spacecraft shows an intriguing mountain on dwarf planet Ceres protruding from a relatively smooth area.

9. Earth. This image of the Bazman volcano is located in a remote region of souther Iran. While the volcano has the classic cone shape of a stratovolcano, it is also heavily dissected by channels that extend downwards from the summit.

10. Earth. This image of the Great Sandy Desert in northwest Australia shows a variety of dune forms across the region. The photo was taken by the Expedition 35 crew from the International Space Station.

Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com


Tags
9 years ago

Solar System: 5 Things to Know This Week

Our solar system is huge, so let us break it down for you. Here are 5 things to know this week:

1. It’s Lunacy, Whether by Day or Night

Solar System: 5 Things To Know This Week

What’s Up in the night sky during November? See all the phases of the moon by day and by night, and learn how to look for the Apollo landing sites. Just after sunset on November 13 and 14, look near the setting sun in the western sky to see the moon as a slender crescent. For more, catch the latest edition of the monthly “What’s Up” Tumblr breakdown.

2. Answer to Longstanding Mars Mystery is Blowin’  in the Wind

Solar System: 5 Things To Know This Week

What transformed Mars from a warm and wet environment, one that might have supported surface life, to the cold, arid planet it is today? Data from our Mars Atmosphere and Volatile Evolution (MAVEN) mission pins much of the blame on the sun. Streams of charged solar particles crash against the Martian atmosphere, and without much of a magnetic field there to deflect the onslaught, over time the solar wind has stripped the air away.

3. Orbital Maneuvers in the Dark

Solar System: 5 Things To Know This Week

The New Horizons mission team has set a new record. They recently performed the last in a series of trajectory changes that set the spacecraft on a course for an encounter with a Kuiper Belt object in January 2019. The Kuiper Belt consists of small bodies that orbit the sun a billion miles or more beyond Pluto. These latest course maneuvers were the most distant trajectory corrections ever performed by any spacecraft.

4. Visit Venus (But Not Really — You’d Fry)

Solar System: 5 Things To Know This Week

Mars isn’t the only available destination. You can visit all the planets, moons and small worlds of the solar system anytime, right from your computer or handheld device. Just peruse our planets page, where you’ll find everything from basic facts about each body to the latest pictures and discoveries. Visit Venus HERE.

5. Titan Then and Now

Solar System: 5 Things To Know This Week

Nov. 12 marks the 35th anniversary of Voyager 1’s Saturn flyby in 1980. Voyager saw Saturn’s enshrouded, planet-sized moon Titan as a featureless ball. In recent years, the Cassini mission haas revealed Titan in detail as a complex world. The spacecraft has peered beneath its clouds, and even delivered a probe to its encounter, which will include infrared scans, as well as using visible light cameras to look for methane clouds in the atmosphere.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags