Find your tribe in a Sea of Creativity
Seriously, genetics is weird.
I was reading one paper on long noncoding RNAs and there's this one part that just really stood out to me.
So to catch everyone up, genetic data is stored as DNA. Then parts of it go through a process called transcription to build a strand of RNA. Certain RNAs get translated into proteins, but there are noncoding RNAs that don't make proteins but instead do a secret second thing (and I mean secret cause there are tons of ncRNAs that no one knows what they do). long noncoding RNAs are just noticeably longer than average.
Anyway, one lncRNA mentioned in the paper is called WINCR1. When the researchers managed to block it from being used, they noted that cells lost the ability to divide and there was one particular gene GADD45B, which is responsible for triggering apoptosis, was more common in the cells.
So my guess is one of WINCR1's jobs is to just confirm to the self-destruct system that the DNA isn't broken. Like, it being transcribed essentially tells the cell that that part of the DNA is still working and it can then go and turn off the kill switch.
So I guess cells are just designed to kill themselves as their default setting and WINCR1 is the drinking bird pressing the Y key to tell the system to not just blow up.
Scientists from BGI-Research developed a new version of the Cultivated Genome Reference (CGR), a repository of high-quality draft genomes of the human gut microbiome. The current version of CGR, which is CGR2, has been further expanded to incorporate numerous high-quality draft genomes generated from cultivated bacteria. CGR2 classifies previously unidentified species and uncovers the functional and genomic diversity of bacterial strains. An in-depth analysis of carbohydrate-active enzymes (CAzymes) reveals the phyla with the largest and most diverse repertoires of these enzymes. CGR2 also enabled the identification of genes involved in the synthesis of secondary metabolites in the gut microbiome. The unraveling of the gut microbiome genomic landscape will enable the development of therapeutics and provide a deep insight into the evolution of the human gut microbiome.
Continue Reading
An innovative artificial intelligence program called CLEAN (contrastive learning–enabled enzyme annotation) has the ability to predict enzyme activities based on their amino acid sequences, even if the enzymes are unfamiliar or inadequately understood. The researchers have reported that CLEAN has surpassed the most advanced tools in terms of precision, consistency, and sensitivity. However, a deeper understanding of enzymes and their roles would be beneficial in a number of disciplines, including genetics, chemistry, pharmaceuticals, medicine, and industrial materials.
The scientists are using the protein language to forecast their performance, similar to how ChatGPT uses written language data to generate predictive phrases. Almost all scientists desire to comprehend the purpose of a protein as soon as they encounter a new protein sequence. Furthermore, this tool will aid researchers in promptly recognizing the suitable enzymes needed to manufacture chemicals and materials for various applications, be it in biology, medicine, or industry.
Continue Reading