職業訓練局李惠利工業學院機械系夜校數學,工程畫,氣動控制應用課程,程式語言BASIC 前講師;職業訓練局柴灣工業學院機械系Cam 前臨時教師; FESTO HONG KONG快利圖氣動機械有限公司 前氣動顧問及FESTO DIDACTIC 氣動課程P111, 基礎氣動控制工程P122,電氣課程EP211 前導師;Honeywell 汉维有限公司 HVAC 樓宇設備控制 前工程師;中國港灣工程公司CHEC香港代表振華工程有限公司(招商局集團)樓宇建築及基礎工程部 前建築設備工程師;德昌電機Johnson Electric大埔工業邨P05廠 前見習工程師;ALLIED Amphenol Products Manufacturing Operation安費諾(東亞)有限公司 氣動工程師前義工;前Auto-S Associate Co. 投資者。 中華人民共和國香港特別行政區政府社會福利署綜合社會保障援助計劃家庭殘疾離婚人士受助人,離婚,壹兒子黃瑞斌和壹男孫黃愷泰長輩, 和母親鄭順蘭和柒弟黃永生同住家庭事務管理助理。
78 posts
#cityuniversityofhongkong #香港城市大學 #香港城市大學學生會基督徒詩班 #香港城市大學學生會 #城市大學 #城大 @cityusu @cityusuwelfare (在 東旺樓) https://www.instagram.com/p/CGzBsmkp83a/?igshid=1x7kg3j3mty5c
在 Hong Kong https://www.instagram.com/p/CCD2MMOpFvo/?igshid=tf8brw0ax8mc
https://careers.state.gov
新聞直播
@festo.tumblr
#beauty
Chloe Grace Moretz
#instagram model
Chloë Grace Moretz
#kateupton
@a-cleanlook2
Check out my #SuperBowl video for gameofwar!
@festo.com
#festo
@wongwingchun60
This year marks the 50th anniversary of Earth Day, and to commemorate the big day we’re bringing you exclusive access our Acting Director of Earth Sciences, Sandra Cauffman, and Associate Administrator for the Science Mission Directorate, Dr. Thomas Zurbuchen! They will be teaming up to take your questions in an Answer Time session on Earth Day, April 22, from 12-1pm EDT here on NASA’s Tumblr! Make sure to ask your question now by visiting http://nasa.tumblr.com/ask!
Our investment in space – both the unique Earth science we conduct from orbit and the technology we’ve developed by living in space and exploring our solar system and universe – is returning benefits every day to people around the world, particularly those who are working on environmental issues. From documenting Earth’s changing climate to creating green technologies to save energy and natural resources, we’re working to help us all live more sustainably on our home planet and adapt to natural and human-caused changes.
From space we study: dust storms, volcanoes, flooding, coral reefs, night lights, wildfires, urban growth, food production, mosquito tracking and other human health issues, precipitation across the world, hurricanes and typhoons, soil moisture, land and sea ice, and changes to the land and sea surfaces.
From airborne research planes we track: changes in polar ice, glaciers, sea level rise, cloud formation, storms, sea level rise and Earth’s changing landscape.
Our Earth science focus areas include: Atmospheric Composition, Weather and Atmospheric Dynamics, Climate Variability and Change, Water and Energy Cycle, Carbon Cycle and Ecosystems, Earth Surface and Interior
Keep up to date with all our Earth Science missions and research by following NASA Earth on Twitter, Facebook and Instagram.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
@wongwingchun60
Emilia Clarke
#Apollo Forum
It’s the 50th anniversary of the Apollo 13 mission! NASA’s “successful failure,”Apollo 13 was to be the third lunar landing attempt, but the mission was aborted mid-flight after the rupture of a service module oxygen tank. The crew never landed on the moon, but due to the dedication and ingenuity of Mission Control, made it back to Earth safely. We’ve put some of the most important numbers of the Apollo 13 mission in perspective. Check it out!
Listen to the mission in real time, HERE.
Follow NASA History on Twitter and Facebook for more interesting information about aerospace history!
Check out the stats of all the Apollo Missions in the free e-book Apollo by the Numbers, HERE.
Kate Upton
letters 💌
Meet the real women behind Hidden Figures.
In the early days of the Space Race, Dorothy Vaughan headed the National Advisory Committee for Aeronautics’ (NACA) West Area Computing unit. It was an important but segregated unit of mostly female mathematicians doing aerospace calculations by hand. When NACA became NASA in 1958, the Analysis and Computation Division desegregated and Vaughan became a sought-after expert on FORTRAN – a programming language used on IBM mainframes.
Vaughan is one of the women whose work inspired the film Hidden Figures — a true story of three African American mathematicians who helped NASA launch the first Americans into space.
Feeling inspired? See how coding might figure into your life. Uncover more about Dorothy Vaughan →
Something happened 100 years ago that changed forever the way we fly. And then the way we explore space. And then how we study our home planet. That something was the establishment of what is now NASA Langley Research Center in Hampton, Virginia. Founded just three months after America’s entry into World War I, Langley Memorial Aeronautical Laboratory was established as the nation’s first civilian facility focused on aeronautical research. The goal was, simply, to “solve the fundamental problems of flight.”
From the beginning, Langley engineers devised technologies for safer, higher, farther and faster air travel. Top-tier talent was hired. State-of-the-art wind tunnels and supporting infrastructure was built. Unique solutions were found.
Langley researchers developed the wing shapes still used today in airplane design. Better propellers, engine cowlings, all-metal airplanes, new kinds of rotorcraft and helicopters, faster-than-sound flight - these were among Langley’s many groundbreaking aeronautical advances spanning its first decades.
By 1958, Langley’s governing organization, the National Advisory Committee for Aeronautics, or NACA, would become NASA, and Langley’s accomplishments would soar from air into space.
Robert R. “Bob” Gilruth (1913–2000)
Considered the father of the U.S. manned space program.
He helped organize the Manned Spacecraft Center – now the Johnson Space Center – in Houston, Texas.
Gilruth managed 25 crewed spaceflights, including Alan Shepard’s first Mercury flight in May 1961, the first lunar landing by Apollo 11 in July 1969, the dramatic rescue of Apollo 13 in 1970, and the Apollo 15 mission in July 1971.
Christopher C. “Chris” Kraft, Jr. (1924-)
Created the concept and developed the organization, operational procedures and culture of NASA’s Mission Control.
Played a vital role in the success of the final Apollo missions, the first manned space station (Skylab), the first international space docking (Apollo-Soyuz Test Project), and the first space shuttle flights.
Maxime “Max” A. Faget (1921–2004)
Devised many of the design concepts incorporated into all U.S. manned spacecraft.
The author of papers and books that laid the engineering foundations for methods, procedures and approaches to spaceflight.
An expert in safe atmospheric reentry, he developed the capsule design and operational plan for Project Mercury, and made major contributions to the Apollo Program’s basic command module configuration.
Caldwell Johnson (1919–2013)
Worked for decades with Max Faget helping to design the earliest experimental spacecraft, addressing issues such as bodily restraint and mobility, personal hygiene, weight limits, and food and water supply.
A key member of NASA’s spacecraft design team, Johnson established the basic layout and physical contours of America’s space capsules.
William H. “Hewitt” Phillips (1918–2009)
Provided solutions to critical issues and problems associated with control of aircraft and spacecraft.
Under his leadership, NASA Langley developed piloted astronaut simulators, ensuring the success of the Gemini and Apollo missions. Phillips personally conceived and successfully advocated for the 240-foot-high Langley Lunar Landing Facility used for moon-landing training, and later contributed to space shuttle development, Orion spacecraft splashdown capabilities and commercial crew programs.
Katherine Johnson (1918-)
Was one of NASA Langley’s most notable “human computers,” calculating the trajectory analysis for Alan Shepard’s May 1961 mission, Freedom 7, America’s first human spaceflight.
She verified the orbital equations controlling the capsule trajectory of John Glenn’s Friendship 7 mission from blastoff to splashdown, calculations that would help to sync Project Apollo’s lunar lander with the moon-orbiting command and service module.
Johnson also worked on the space shuttle and the Earth Resources Satellite, and authored or coauthored 26 research reports.
Dorothy Vaughan (1910–2008)
Was both a respected mathematician and NASA’s first African-American manager, head of NASA Langley’s segregated West Area Computing Unit from 1949 until 1958.
Once segregated facilities were abolished, she joined a racially and gender-integrated group on the frontier of electronic computing.
Vaughan became an expert FORTRAN programmer, and contributed to the Scout Launch Vehicle Program.
William E. Stoney Jr. (1925-)
Oversaw the development of early rockets, and was manager of a NASA Langley-based project that created the Scout solid-propellant rocket.
One of the most successful boosters in NASA history, Scout and its payloads led to critical advancements in atmospheric and space science.
Stoney became chief of advanced space vehicle concepts at NASA headquarters in Washington, headed the advanced spacecraft technology division at the Manned Spacecraft Center in Houston, and was engineering director of the Apollo Program Office.
Israel Taback (1920–2008)
Was chief engineer for NASA’s Lunar Orbiter program. Five Lunar Orbiters circled the moon, three taking photographs of potential Apollo landing sites and two mapping 99 percent of the lunar surface.
Taback later became deputy project manager for the Mars Viking project. Seven years to the day of the first moon landing, on July 20, 1976, Viking 1 became NASA’s first Martian lander, touching down without incident in western Chryse Planitia in the planet’s northern equatorial region.
John C Houbolt (1919–2014)
Forcefully advocated for the lunar-orbit-rendezvous concept that proved the vital link in the nation’s successful Apollo moon landing.
In 1963, after the lunar-orbit-rendezvous technique was adopted, Houbolt left NASA for the private sector as an aeronautics, astronautics and advanced-technology consultant.
He returned to Langley in 1976 to become its chief aeronautical scientist. During a decades-long career, Houbolt was the author of more than 120 technical publications.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Coral reefs are one of the most diverse ecosystems on the planet. They’re also in serious danger. Rising ocean temperatures, pollution and other threats are pushing corals towards extinction. But there’s hope. Using techniques originally developed to look at the stars, a team of scientists at our Ames Research Center in California’s Silicon Valley have developed a way to image corals in unprecedented detail. Now, the same team has launched a citizen science project, called NeMO-Net, to classify and assess the health of coral reefs across the globe.
NeMO-Net is a coral classification game that lets you embark on a virtual research vessel and travel the oceans, analyzing actual images of corals on the sea floor. As you explore, you learn about the different types of corals and how to identify them. Your actions in-game train a supercomputer in the real world to classify corals on its own. Each classification you make will help researchers better understand how coral reefs are changing, and ultimately, find a way to save these amazing underwater worlds. Ready to play? Here’s a quick guide to getting started:
NeMO-Net is available now on the Apple App Store, and is playable on iOS devices and Mac computers, with a forthcoming release for Android systems.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
a-nicelook/wong
Kate Upton
#NACA Counting the National Advisory Committee for Aeronautics
(經由 NASA: 60 Years & Counting)