Engineers drop a NASA’s Orion Spacecraft test capsule with crash-test dummies inside into 20-foot-deep Hydro Impact Basin to simulate what the spacecraft may experience when splashing down in the Pacific Ocean after deep-space missions.
More: http://www.nasa.gov/feature/langley/nasa-crash-test-dummies-suit-up-for-action
Engineers at NASA’s Langley Research Center in Hampton, Virginia, are developing inflatable heat shield technology called a Hypersonic Inflatable Aerodynamic Decelerator that could be vacuum packed into a rocket, then expanded in space to allow more cargo or even humans to land on distant planets, like Mars. Here they are testing the packing of a 9-foot diameter donut-shaped test article to simulate what would happen before a space mission.
We’re getting ready to start our next mission to find new worlds! The Transiting Exoplanet Survey Satellite (TESS) will find thousands of planets beyond our solar system for us to study in more detail. It’s preparing to launch from our Kennedy Space Center at Cape Canaveral in Florida.
Once it launches, TESS will look for new planets that orbit bright stars relatively close to Earth. We’re expecting to find giant planets, like Jupiter, but we’re also predicting we’ll find Earth-sized planets. Most of those planets will be within 300 light-years of Earth, which will make follow-up studies easier for other observatories.
TESS will find these new exoplanets by looking for their transits. A transit is a temporary dip in a star’s brightness that happens with predictable timing when a planet crosses between us and the star. The information we get from transits can tell us about the size of the planet relative to the size of its star. We’ve found nearly 3,000 planets using the transit method, many with our Kepler space telescope. That’s over 75% of all the exoplanets we’ve found so far!
TESS will look at nearly the entire sky (about 85%) over two years. The mission divides the sky into 26 sectors. TESS will look at 13 of them in the southern sky during its first year before scanning the northern sky the year after.
What makes TESS different from the other planet-hunting missions that have come before it? The Kepler mission (yellow) looked continually at one small patch of sky, spotting dim stars and their planets that are between 300 and 3,000 light-years away. TESS (blue) will look at almost the whole sky in sections, finding bright stars and their planets that are between 30 and 300 light-years away.
TESS will also have a brand new kind of orbit (visualized below). Once it reaches its final trajectory, TESS will finish one pass around Earth every 13.7 days (blue), which is half the time it takes for the Moon (gray) to orbit. This position maximizes the amount of time TESS can stare at each sector, and the satellite will transmit its data back to us each time its orbit takes it closest to Earth (orange).
Kepler’s goal was to figure out how common Earth-size planets might be. TESS’s mission is to find exoplanets around bright, nearby stars so future missions, like our James Webb Space Telescope, and ground-based observatories can learn what they’re made of and potentially even study their atmospheres. TESS will provide a catalog of thousands of new subjects for us to learn about and explore.
The TESS mission is led by MIT and came together with the help of many different partners. Learn more about TESS and how it will further our knowledge of exoplanets, or check out some more awesome images and videos of the spacecraft. And stay tuned for more exciting TESS news as the spacecraft launches!
Join mission experts to learn more about TESS, how it will search for worlds beyond our solar system and what scientists hope to find! Have questions? Use #askNASA to have them answered live during the broadcast.
Get an update on the spacecraft, the rocket and the liftoff operations ahead of the April 16 launch! Have questions? Use #askNASA to have them answered live during the broadcast.
Hear from mission scientists and experts about the science behind the TESS mission. Have questions? Use #askNASA to have them answered live during the broadcast.
This live show will dive into the science behind the TESS spacecraft, explain how we search for planets outside our solar system and will allow you to ask your questions to members of the TESS team.
This half-hour live show will discuss the TESS spacecraft, the science of searching for planets outside our solar system, and the launch from Cape Canaveral.
Join us live on Reddit for a Science AMA to discuss the hunt for exoplanets and the upcoming launch of TESS!
TESS is slated to launch at 6:32 p.m. EDT on a SpaceX Falcon 9 rocket from our Kennedy Space Center in Florida.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Today (4/06), we celebrate the special radio frequency transmitted by emergency beacons to the international search and rescue network.
This 406 MHz frequency, used only for search and rescue, can be “heard” by satellites hundreds of miles above the ground! The satellites then “forward” the location of the beacon back to Earth, helping first responders locate people in distress worldwide, whether from a plane crash, a boating accident or other emergencies.
Our Search and Rescue office, based out of our Goddard Space Flight Center, researches and develops emergency beacon technology, passing the technology to companies who manufacture the beacons, making them available to the public at retail stores. The beacons are designed for personal, maritime and aviation use.
The search and rescue network, Cospas-Sarsat, is an international program that ensures the compatibility of distress alert services with the needs of users. Its current space segment relies on instruments onboard low-Earth and geosynchronous orbiting satellites, hundreds to thousands of miles above us.
Space instruments forward distress signals to the search and rescue ground segment, which is operated by partner organizations around the world! They manage specific regions of the ground network. For example, the National Oceanic and Atmospheric Administration (NOAA) operates the region containing the United States, which reaches across the Atlantic and Pacific Oceans as well as parts of Central and South America.
NOAA notifies organizations that coordinate search and rescue efforts of a 406 MHz distress beacon’s activation and location. Within the U.S., the U.S. Air Force responds to land-based emergencies and the U.S. Coast Guard responds to water-based emergencies. Local public service organizations like police and fire departments, as well as civilian volunteers, serve as first responders.
Here at NASA, we research, design and test search and rescue instruments and beacons to refine the existing network. Aeronautical beacon tests took place at our Langley Research Center in 2015. Using a 240-foot-high structure originally used to test Apollo spacecraft, our Search and Rescue team crashed three planes to test the survivability of these beacons, developing guidelines for manufacturers and installation into aircraft.
In the future, first responders will rely on a new constellation of search and rescue instruments on GPS systems on satellites in medium-Earth orbit, not hundreds, but THOUSANDS of miles overhead. These new instruments will enable the search and rescue network to locate a distress signal more quickly than the current system and achieve accuracy an order of magnitude better, from a half mile to approximately 300 feet. Our Search and Rescue office is developing second-generation 406 MHz beacons that make full use of this new system.
We will also incorporate these second-generation beacons into the Orion Crew Survival System. The Advanced Next-Generation Emergency Locator (ANGEL) beacons will be attached to astronaut life preservers. After splashdown, if the Orion crew exits the capsule due to an emergency, these beacons will make sure we know the exact location of floating astronauts! Our Johnson Space Center is testing this technology for used in future human spaceflight and exploration missions.
If you’re the owner of an emergency beacon, remember that beacon registration is free, easy and required by law.
To register your beacon, visit: beaconregistration.noaa.gov
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Picnics, parades and fireworks are the attributes of a grand July Fourth celebration. So are the itch and scratch of mosquito bites. While the bites are annoying, they don't tend to stop the festivities. However, certain types of mosquitoes can cause serious harm. They are known to carry and spread diseases like Zika, West Nile Virus and malaria.
One of the tools researchers are using to track these mosquitos is citizen science data combining with NASA Earth satellite observations to create new forecast models that can predict the spread of mosquito-carrying diseases, but more data are needed to improve models that can predict and track mosquito-borne diseases.
“We do not have enough information on the geographic distribution of mosquito and time-variation in their populations. If a lot of people participated in this citizen science initiative worldwide, it will help fill in gaps and that would help our work,” said Assaf Anyamba, a scientist from Universities Space Research Association using satellite data to study mosquitoes at NASA's Goddard Space Flight Center in Greenbelt, Maryland.
From fall 2017 to spring 2018, two NASA DEVELOP teams at Goddard studied Western Europe, a place not typically known for mosquito disease outbreaks. DEVELOP, part of NASA’s Applied Sciences Program, addresses environmental and public policy issues through interdisciplinary research projects that apply the lens of NASA Earth observations to community concerns around the globe. The Global Mosquito Alert Consortium supplied the DEVELOP teams with citizen science data.
The teams blended the citizen science data with NASA satellite observations of land surface temperatures, humidity, soil moisture, elevation, vegetation and precipitation. The data were then used to create an interactive, open-source map on Google Earth Engine to improve prediction models for disease-carrying mosquitoes. The work is ongoing.
Early results showed that vegetation, humidity and soil moisture made it easier for mosquitoes to thrive during the summer months. During the winter, elevation played a stronger role in creating mosquito-friendly habitats. The lower the altitude, the higher the number of mosquitoes. One challenge with the study was that the citizen science data was concentrated in populated areas; and as a result, it was skewing some of the mosquito results,” said Sara Lubkin, DEVELOP project coordination fellow at Goddard.
More citizen science data from more areas of the world could help.
“Knowing the mosquito species and their approximate populations at a given time provides useful information on the potential of occurrence of a particular pathogen, or disease transmission,” said Anyamba.
Different environmental conditions are suitable for certain types of disease-carrying mosquitoes.
Every summer, hot, humid conditions drive up mosquito populations. Since there are plenty of wet areas to live and breed, mosquitoes tend to stay in one area. However, when conditions become hot and dry, mosquitoes migrate to more suitable habitats.
Satellites can detect how wet or how dry an area is, and that information helps determine what types of mosquitoes and disease can move through an environment.
The last significant West Nile outbreak in the United States occurred in 2011, which was a dry year. The hot, dry season led mosquitoes to move into highly urbanized and populated areas seeking food and water.
Warmer temperatures excite some mosquito species, causing them to bite more people. Also, certain high temperature thresholds can reduce the amount of time it takes for mosquitoes to mature from larvae to adults leading to doubling mosquito populations over an average year.
Mosquitoes cannot travel far on their own. Instead, they have to hitch a ride on people and animals to travel any significant distance. If a mosquito is a type that carries and spreads diseases, then the disease can move into new areas, as occurred in Western Europe.
The public can help track mosquitoes by downloading an app called GLOBE Observer, and then collect data over the summer using the Mosquito Habitat Mapper tool in the app. The app guides users through the process of identifying and eliminating mosquito breeding sites in order to reduce mosquito populations in their local area.
Related links:
An Interactive Model of Mosquito Presence and Distribution to Assist Vector-Borne Disease Management in Western Europe
A new report from the National Center for Atmospheric Research evaluates the risk to 50 U.S. cities from the Aedes aegypti mosquito, which carries Zika.
Global Mosquito Alert Consortium
NASA Citizen Science App Tackles Mosquito-Borne Disease
By Rani Gran NASA's Goddard Space Flight Center, Greenbelt, Md.
Get a behind-the-scenes look at how test dummies at NASA's Langley Research Center contribute to making the planes we fly on safer and developing space exploration vehicles. Work ranges from next-generation aircraft to water-impact tests that evaluate the splashdown of Orion astronaut crew capsules returning from space.
Credit: NASA/Videographer: Gary Banziger; Writer and Co-Producer: Lily Daniels; Editor and Co-Producer: Kevin Anderson
Check out what goes on at our Hydro Impact Basin Facility at the NASA Langley Research Center! This steel structure was once our Lunar Landing Research Facility for the Apollo missions.
Commercial Crew Partner Boeing Tests Starliner Spacecraft
Engineers from NASA’s Langley Research Center in Hampton, Virginia, and Boeing dropped a full-scale test article of the company’s CST-100 Starliner into Langley’s 20-foot-deep Hydro Impact Basin. Although the spacecraft is designed to land on land, Boeing is testing the Starliner’s systems in water to ensure astronaut safety in the unlikely event of an emergency during launch or ascent. Testing allows engineers to understand the performance of the spacecraft when it hits the water, how it will right itself and how to handle rescue and recovery operations. The test is part of the qualification phase of testing and evaluation for the Starliner system to ensure it is ready to carry astronauts to and from the International Space Station.
Image Credit: NASA/David C. Bowman
Posing in the wind tunnel. Via NASA Langley.
Skywatchers in the western hemisphere will see a rare sight on Monday: over the course of several hours, the silhouette of the planet Mercury will appear to cross the face of the Sun. The “transit” of Mercury results from the precise alignment of the orbits of Mercury and Earth that only happens either 13 or 14 times per century; usually the orbital alignment is weak, and as seen from our planet Mercury “misses” the Sun’s disk as it orbits once every 88 days. But on Monday, the view through a properly-shielded telescope will reveal the innermost planet as a dark, perfectly circular spot that moves completely across the Sun in exactly seven and a half hours.
Because of the specifics of our respective orbits, Mercury transits only happen in either the months of May or November, with average dates of 8th May and 10th November. May transits happen less frequently than November transits because during May, Mercury is closer to its largest distance from the Sun, while in November the opposite is true. As a result, the range of possible angles between the Sun and Mercury, as seen from Earth, is smaller in November than May. While the interval between successive November transits can be either 7, 13 or 33 years, May transits are less common, with successive appearances in either 13- or 33-year intervals.
Observations of Mercury transits reach back to at least the seventeenth century. Observations from earlier than this are unlikely because the apparent size of Mercury’s silhouette against the Sun is too small for the unaided eye to resolve. This is why the first recorded Mercury transit — by the French astronomer Pierre Gassendi on 7 November 1631 — dates to after Galileo Galilei’s invention of the telescope in about 1609. Johannes Kepler earlier understood that Mercury’s orbit should periodically take it in front of the Sun, but he died in 1630 before being able to observe a predicted transit.
While these events once had great scientific interest, they are now mainly curiosities that delight astronomy aficionados. Rarer still are transits of Venus across the Sun, the last of which took place in 2012. These events come in pairs separated by 113 years, meaning that most people alive now will not be around to see the next one in December 2117.
Who can see Monday’s event? That depends on the hour of day and which side of the Earth faces the Sun at the time. The map below indicates which parts of the world see either all, some, or none of the transit:
You’ll need at least a good pair of binoculars or a telescope — properly shielded with a heavy filer to prevent eye damage — to even sense Mercury during the transit. It will look like a small, perfectly round and completely opaque black dot against the bright solar photosphere. Mercury is distinguishable in this sense from sunspots, which are irregular in shape, can be partially transparent, and of much larger sizes. This image compares Mercury during a transit (bottom-center) with a sunspot near the solar limb (upper right).
NOTE: DO NOT LOOK AT THE SUN THROUGH A TELESCOPE WITHOUT A FULL-APERTURE SOLAR FILTER! Doing so can cause permanent blindness! Instead, try projecting the image of the sun from a telescope or binoculars onto white paper. This method avoids bringing dangerous, strongly-focused sunlight anywhere near one’s eyes.
Better still: Watch the transit live online! Find live streaming coverage from Slooh, NASA TV, Celestron telescopes, Sky and Telescope magazine, and the Virtual Telescope.
(Top image credit: Sky & Telescope magazine; map and transit image: Fred Espenak)
From enabling astronauts to practice moon landings to aircraft crash testing to drop tests for Orion, NASA's gantry has come full circle.
The gantry, a 240-foot high, 400-foot-long, 265-foot-wide A-frame steel structure located at Langley Research Center in Hampton, Va., was built in 1963 and was used to model lunar gravity. Originally named the Lunar Landing Research Facility (LLRF), the gantry became operational in 1965 and allowed astronauts like Neil Armstrong and Edwin "Buzz" Aldrin to train for Apollo 11's final 150 feet before landing on the moon.
Because the moon's gravity is only 1/6 as strong as Earth's, the gantry had a suspension system that supported 5/6 of the total weight of the Lunar Excursion Module Simulator (LEMS), the device the astronauts used to perform the tests. This supportive suspension system imitated the moon's gravitational environment. Additionally, many of the tests were conducted at night to recreate lighting conditions on the moon.
Neil Armstrong with the LEMS at the Lunar Landing Research Facility. This picture (below) was taken in February 1969 - just five months before Armstrong would become the first person to set foot on the surface of the moon.
Aircraft Crash Test Research
After the Apollo program concluded, a new purpose emerged for the gantry – aircraft crash testing. In 1972, the gantry was converted into the Impact Dynamics Research Facility (IDRF) and was used to investigate the crashworthiness of General Aviation (GA) aircraft and rotorcraft. The facility performed full-scale crash tests of GA aircraft and helicopters, system qualification tests of Army helicopters, vertical drop tests of Boeing 707 and composite fuselage sections and drop tests of the F-111 crew escape capsule.
The gantry was even used to complete a number of component tests in support of the Mars Sample Return Earth Entry Vehicle.
With features including a bridge and a 72-foot vertical drop tower, the gantry was able to support planes that weighed up to 30,000 pounds. Engineers lifted aircraft as high as 200 feet in the air and released them to determine how well the craft endured the crash. Data from the crash tests were used to define a typical acceleration for survivable crashes as well as to establish impact criteria for aircraft seats. The impact criteria are still used today as the Federal Aviation Administration standard for certification.
In 1985, the structure was named a National Historic Landmark based on its considerable contributions to the Apollo program.
Revitalized Space Mission
The gantry provides engineers and astronauts a means to prepare for Orion's return to Earth from such missions. With its new mission, the gantry also received a new name – the Landing and Impact Research (LandIR) Facility.
Although originally capable of supporting only 30,000 pounds, the new bridge can bear up to 64,000 pounds after the summer 2007 renovations. Other renovations include a new elevator, floor repairs and a parallel winch capability that allows an accurate adjustment of the pitch of the test article. The new parallel winch system increases the ability to accurately control impact pitch and pitching rotational rate. The gantry can also perform pendulum swings from as high as 200 feet with resultant velocities of over 70 miles per hour.
The gantry makes researching for the optimal landing alternative for NASA's first attempted, manned dry landing on Earth possible. Orion's return on land rather than water will facilitate reuse of the capsule. A water landing would make reuse difficult due to the corrosiveness of salt water.
The testing process involves lifting the test article by steel cables to a height between 40 and 60 feet and swinging it back to Earth. Although the airbags appear most promising, the gantry has the capability to perform different kinds of tests, including a retro rocket landing system and a scale-model, water landing test using a four-foot-deep circular pool. So far, three types of tests have been conducted in support of the Orion program, each progressing from the previous to more realistic features.
The first test consisted of dropping a boilerplate test article that was half the diameter of what Orion will be. For the second round of testing, engineers added a welded structure to the top, with a shape more comparable to Orion to examine the article's tendency to flip or remain upright.
Hydro-Impact
The on-going tests for Orion continue with impacts on water. This is to ensure astronaut safety during a return to Earth mission. Similar to the Apollo program, Orion will re-enter Earth’s atmosphere at very high speeds and after slowing down, deploy parachutes to further slow the descent into the ocean. At NASA Langley Research Center, engineers use the hydro-impact research to determine the stresses on the vehicle and examine its behavior during a mock splashdown.