Fashion photo by Gordon Parks, New York, 1950
Steampunk Art
Aboard the International Space Station this morning, Astronaut Kimiya Yui of the Japan Aerospace Exploration Agency (JAXA) successfully captured JAXA’s Kounotori 5 H-II Transfer Vehicle (HTV-5) at 6:28 a.m. EDT.
Yui commanded the station’s robotic arm, Canadarm2, to reach out and grapple the HTV-5, while NASA astronauts Kjell Lindgren provided assistance and Scott Kelly monitored HTV-5 systems. The HTV-5 launched aboard an H-IIB rocket at 7:50 a.m. Wednesday, Aug. 19, from the Tanegashima Space Center in southern Japan. Since then, the spacecraft has performed a series of engine burns to fine-tune its course for arrival at the station.
The HTV-5 is delivering more than 8,000 pounds of equipment, supplies and experiments in a pressurized cargo compartment. The unpressurized compartment will deliver the 1,400-pound CALorimetric Electron Telescope (CALET) investigation, an astrophysics mission that will search for signatures of dark matter and provide the highest energy direct measurements of the cosmic ray electron spectrum.
Below is a breathtaking image shared by Astronaut Scott Kelly of the HTV-5 and Canadarm2, which reached out and grappled the cargo spacecraft.
1960’s(USA) Color Photography
Gamma-ray bursts (GRBs) are flashes of gamma rays associated with extremely energetic explosions that have been observed in distant galaxies. They are the brightest electromagnetic events known to occur in the universe. Bursts can last from ten milliseconds to several minutes. The initial burst is usually followed by a longer-lived “afterglow” emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, microwave and radio).
Most observed GRBs are believed to consist of a narrow beam of intense radiation released during a supernova or hypernova as a rapidly rotating, high-mass star collapses to form a neutron star, quark star, or black hole. A subclass of GRBs (the “short” bursts) appear to originate from a different process - this may be due to the merger of binaryneutron stars. The cause of the precursor burst observed in some of these short events may be due to the development of a resonance between the crust and core of such stars as a result of the massive tidal forces experienced in the seconds leading up to their collision, causing the entire crust of the star to shatter.
Gamma-ray bursts are thought to be highly focused explosions, with most of the explosion energy collimated into a narrow jet traveling at speeds exceeding 99.995% of the speed of light. The approximate angular width of the jet (that is, the degree of spread of the beam) can be estimated directly by observing the achromatic “jet breaks” in afterglow light curves: a time after which the slowly decaying afterglow begins to fade rapidly as the jet slows and can no longer beam its radiation as effectively
Image credit: NASA/Swift/Cruz deWilde
Stars come in all shapes, colors and SIZES!
https://www.youtube.com/watch?v=HEheh1BH34Q
http://www.sbau.org/planets.htm
http://commons.wikimedia.org/wiki/File:Star_Chart.jpg